Ch. 1 Solutions

1.1. a)
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To normalize, introduce an overall complex multiplicative factor and solve for this factor by imposing the normalization condition:
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Because an overall phase is physically meaningless, we choose C to be real and positive: 
[image: image3.wmf].  Hence the normalized input state is
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Likewise:
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and
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b)  The probabilities for state 1 are
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For the other axes, we get
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The probabilities for state 2 are
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The probabilities for state 3 are
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c)  Matrix notation:
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d)  Probabilities in matrix notation
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1.2 a)

State 1
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State 2
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State 3
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b)  Inner products
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1.3
Probability of measuring an in state 
[image: image27.wmf] is
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Probability of same measurement if state is changed to 
[image: image29.wmf] is
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So the probability is unchanged.

1.4
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1.5 a)  Possible results of a measurement of the spin component Sz are always 
[image: image34.wmf] for a spin-½ particle.  Probabilities are
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b)  Possible results of a measurement of the spin component Sx are always 
[image: image36.wmf] for a spin-½ particle.  Probabilities are
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c)  Histogram:
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1.6 a)  Possible results of a measurement of the spin component Sz are always 
[image: image39.wmf] for a spin-½ particle.  Probabilities are
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b)  Possible results of a measurement of the spin component Sx are always 
[image: image41.wmf] for a spin-½ particle.  Probabilities are
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c)  Histogram:
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1.7 a) Heads or tails:  H or T

b) Each result is equally likely so
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c)  Histogram:
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1.8 a) Six sides with 1, 2, 3, 4, 5, or 6 dots.

b) Each result is equally likely so
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c)  Histogram:
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1.9 a) 36 possible die combinations with 11 possible numerical results:
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b) Each possible die combination is equally likely, so the probabilities of the numerical results are the number of possible combinations divided by 36:
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Note that the sum of the probabilities is unity as it must be.

c)  Histogram:
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1.10 a) The probabilities for state 1 are
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The probabilities for state 2 are
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The probabilities for state 3 are
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b)  States 2 and 3 differ only by an overall phase of 
[image: image54.wmf], so the measurement results are the same; the states are physically indistinguishable.  States 1 and 2 have different relative phases between the coefficients, so they produce different results.

1.11 a)  Possible results of a measurement of the spin component Sz are always 
[image: image55.wmf] for a spin-½ particle.  Probabilities are
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b)  After the measurement result of the spin component Sz is 
[image: image57.wmf], the system is in the 
[image: image58.wmf] eigenstate corresponding to that result.   The possible results of a measurement of the spin component Sx are always 
[image: image59.wmf] for a spin-½ particle.  The probabilities are
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c)
Diagrams
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1.12  For a system with three possible measurement results: a1, a2, and a3, the three eigenstates are 
[image: image63.wmf], 
[image: image64.wmf], and 
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Orthogonality:
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Normalization:
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Completeness:



[image: image68.wmf]
1.13 a) For a system with three possible measurement results: a1, a2, and a3, the three eigenstates 
[image: image69.wmf], 
[image: image70.wmf], and 
[image: image71.wmf] are
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b) In matrix notation, the state is
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The state given is not normalized, so first we normalize it:
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The probabilities are
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Histogram:
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c) In matrix notation, the state is
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The state given is not normalized, so first we normalize it:
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The probabilities are
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Histogram:
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1.14. There are four possible measurement results: 2 eV, 4 eV, 7 eV, and 9 eV.  The probabilities are
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Histogram:
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1.15 The probability is
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1.16 The measured probabilities are
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Write the input state as
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Equating the predicted 
[image: image87.wmf] probabilities and the experimental results gives
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allowing for a possible relative phase.  Equating the predicted 
[image: image89.wmf] probabilities and the experimental results gives
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Equating the predicted 
[image: image91.wmf] probabilities and the experimental results gives
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Hence the input state is
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1.17 Follow the solution method given in the lab handout.  (i) For unknown number 1, the measured probabilities are
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Write the unknown state as
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Equating the predicted 
[image: image96.wmf] probabilities and the experimental results gives
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Hence the unknown state is
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which produces the probabilities
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in agreement with the experiment.

(ii)  For unknown number 2, the measured probabilities are
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Write the unknown state as
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Equating the predicted 
[image: image102.wmf] probabilities and the experimental results gives
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allowing for a possible relative phase.  Equating the predicted 
[image: image104.wmf] probabilities and the experimental results gives
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Equating the predicted 
[image: image106.wmf] probabilities and the experimental results gives
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Hence the unknown state is
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which produces the probabilities
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in agreement with the experiment.

(iii)  For unknown number 3, the measured probabilities are
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Write the unknown state as
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Equating the predicted 
[image: image112.wmf] probabilities and the experimental results gives
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allowing for a possible relative phase.  Equating the predicted 
[image: image114.wmf] probabilities and the experimental results gives
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Equating the predicted 
[image: image116.wmf] probabilities and the experimental results gives
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Hence the unknown state is
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which produces the probabilities
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in agreement with the experiment.

(iv)  For unknown number 4, the measured probabilities are
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Write the unknown state as



[image: image122.wmf]
Equating the predicted 
[image: image123.wmf] probabilities and the experimental results gives
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allowing for a possible relative phase.  Equating the predicted 
[image: image125.wmf] probabilities and the experimental results gives


[image: image126.wmf]
Equating the predicted 
[image: image127.wmf] probabilities and the experimental results gives
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Hence the unknown state is
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which produces the probabilities
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in agreement with the experiment.
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