CHAPTER 1
FUNDAMENTAL CONCEPTS

1.1 We use the first three steps of Eq. 1.11

c
g, =—V—+—-v—2
E E
Gx Gy z
g, =—V—=—-v—+
E E E
Adding the above, we get
_1—-2V( )
g, +g, +¢g, = c,+0,+0,

Adding and subtracting v%"— from the first equation,

_1+v \ ( )
€, —Tcx “E C, +Gy +0,
Similar expressions can be obtained for €,, and €.

From the relationship for y,, and Eq. 1.12,

T, = _E
=T olev)
Above relations can be written in the form
c=De
where D is the material property matrix defined in Eq. 1.15. =

etc.

1.2 Plane strain condition implies that

xS, %
E E

g, =0=-v

which gives

c,= v(cx +0c y)
We have, 6, =20000psi o, =-10000psi E=30x10°psi v=0.3.
On substituting the values,

o, =3000 psi [ |




1.3  Displacement field
u= 10'4(—x2 +2y° + 6xy)
v=10"(3x+6y )

a—”=10“‘(—2x+6y) a—”=10“‘(4y+6x)
ox oy
¥ _3x10™ @=104(6+2y)
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1.4 On inspection, we note that the displacements « and v are given by

u=01y+4
v=0

It is then easy to see that

sx=%=o

ox
8y=@=0
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1.5 The displacement field is given as

u= 1+3x+4x3+6xy2
v=xy—7x2

(a) The strains are then given by




=3+12x* +6y°

ov
Y =——+—a—x—=12xy+y—14x

(b) In order to draw the contours of the strain field using MATLAB, we need to create a
script file, which may be edited as a text file and save with “.m” extension. The file

for plotting €, is given below

file “prob1p5b.m”
[X,Y] = meshgrid(-1:.1:1,-1:.1:1);
Z = 3.+412.*X."2+6.*Y."2;
[C,h] = contour(X,Y,Z2);
clabel (C,h);

On running the program, the contour map is shown as follows:
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Contours of &,

Contours of €, and y,, are obtained by changing Z in the script file. The numbers on
the contours show the function values.

(¢) The maximum value of €, is at any of the corners of the square region. The

maximum value is 21.
n




1.6
c,=40MPa ¢, =20MPa o, =30MPa

=-30MPa t,=15MPa 1, =10MPa

‘I:yz

SR

From Eq.1.8 we get
T.=ocn, +1,hn,+T.1,
=35.607 MPa
T, =t n +o,n,+1,n,
=—6.213 MPa
T,=t.n +1t,.n,+0.n,
=13.713MPa
c,=Tn +T,n, +Tn,
=24.393MPa

1.7  From the derivation made in P1.1, we have

E
c, =m[(l—v)sx + Ve, +vaz]

which can be written in the form
E
c, = m[(l - 2v)ax + vav]
and
_E
= o)
Lame’s constants A and p are defined in the expressions

a

o, =Ag, +2pe,
Ty = HY
On inspection,
=V
(1+v)1-2v)
E

T

u is same as the shear modulus G. =




1.8

£=1.2x10"°
AT =30°C
E =200GPa

a=12x10°/°C
g, =0AT =3.6x107*
c=E(e—¢,)=-69.6MPa

1.9

£ S oy
dx

d= fﬂdx =(x+2x3)
dx 3
= L(l + sz)
3
1.10 Following the steps of Example 1.1, we have
(80+40+50) —807(q,| _[60
—80 80 |lg,] |50

Above matrix form is same as the set of equations:

L

0

170 g; — 80 g, = 60
-80¢g; +80¢g, = 50
Solving for ¢g; and ¢, we get
q1= 1.222 mm

q>= 1.847 mm




1.11

1.12

The potential energy Il is given by

12 du\’ ’
n=—jﬂ{—Jdp-wmm
2 0 dx 0
Consider the polynomial from Example 1.2,

u=a3(—2x+x2)
du

x=

Zo= 2+ 2)ay =2(-1+ x)a;

x=2

On substituting the above expressions and integrating, the first term of becomes

2
26132(5)

and the second term

2J’ugAdx = }udx = a{— x* +
0

0

ﬁlz
3)%

__4,
3 3
Thus
11 —i(ag'2 +a3)
6_1_[:0: 5 :_l
Oa, 2
o 1
this gives  u,_, = —5(—2 +1)=0.5

S

_ .3
x=0 f=x x=1

We use the displacement field defined by u = a¢ + aix + ax*

[ Y




u=0atx=0= gp=0
u=0atx=1=>a+=0 = aa=—-q
We then have u = ax(1 —x), and du/dx = a;(1 —x).

The potential energy is now written as

1 2
m=1 @) e — | fuds
20 dx 0
1 1
=%J‘a,2(l—2x)2dx— jx3a,x(1—x)dx
0 0
1 1
=% a12(1—4x+4x2)dx—jal(x4—x5)clx
0 0
_1 12(1—i+i)—a,(l—lj
2 2 3 5 6
a’ a
6 30
ai_, 4 _1
2a, 330

This yields, a;=0.1
Displacemen u = 0.1x(1 — x)

Stress 6 =Fdu/dx = 0.1(1 —x) ]

1.13  Let u be the displacement at x = 200 mm. Piecewise linear displacement that is

continuous in the interval 0 < x < 500 is represented as shown in the figure.

0 200

0<x<200
u=0atx=0 = ¢1=0
u=u; atx=200 = a,=u/200

500




= u=u/200)x duw/dx = u1/200

200 <x <500
u=0 atx=500 = a3+500a3=0
u=u; atx=200 = a3 +200as=uy

= A= —u1/300 asz = (5/3)141
= u=053)u; — (w/300)x  du/dx= —u;/200
200 500
an,A (d“J _[ES,A (d”) dx —10000z,
dx 200 dx
1 1 oy
[=—FE_ 4 200+ E A, ——— 300—10000u1
2 200 2 00
_ L Eud B4, u,” —10000u,
2 200 300
ar_ = Eady +—————E5’ 4, )ul -10000=0
ou, 200 300

Note that using the units MPa (N/mmz) for modulus of elasticity and mm? for area and
mm for length will result in displacement in mm, and stress in MPa.

Thus, E,= 70000 MPa, E;=200000, and 4; = 900 mm’, 4, = 1200 mm’. On
substituting these values into the above equation, we get

=0.009 mm
This is precisely the solution obtained from strength of materials approach [ |

1.14
In the Galerkin method, we start from the equilibrium equation

iEAﬁ+g 0
dc  dx

Following the steps of Example 1.3, we get

du db
j- EA dz ~dc j gbdx
Introducing
(2x x? )41, and

(2x x)¢




where u; and ¢, are the values of » and ¢ at x = 1 respectively,
2 2
¢1[—u, Ja-2x) ax+ J-(2x—x2)dx} -0
0 0

On integrating, we get
8 4
——u, +— (=0
¢1( 3 1 3)

This is to be satisfied for every ¢;, which gives the solution

U = 0.5 | |
1.15 Weuse
u=a, +a,x+ax’ +a,x’
u=0at x=0
u=0at x=2
This implies that
0=aq,
0=a,+2a, +4,+8a,
and

u =a, (x2 —2x)+ a, (x3 —4x)
% =2a,(x-1)+a, (3x2 - 4)
as and a4 are considered as independent variables in
2
= % I[2a3 (x-1)+a, (3x2 - 4)]2 dx —2(-a, —3a,)

1]
on expanding and integrating the terms, we get

1=1.333a,” +12.8a,” +8a,a, +2a, +6a,

We differentiate with respect to the variables and equate to zero.

a =2.667a;, +8a,+2=0
Oa,

a—H=8a3 +25.6a,+6=0
oa,






