CHAPTER 1 FUNDAMENTAL CONCEPTS

1.1 We use the first three steps of Eq. 1.11

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - v \frac{\sigma_{y}}{E} - v \frac{\sigma_{z}}{E}$$

$$\varepsilon_{y} = -v \frac{\sigma_{x}}{E} + \frac{\sigma_{y}}{E} - v \frac{\sigma_{z}}{E}$$

$$\varepsilon_{z} = -v \frac{\sigma_{x}}{E} - v \frac{\sigma_{y}}{E} + \frac{\sigma_{z}}{E}$$

Adding the above, we get

$$\varepsilon_x + \varepsilon_y + \varepsilon_z = \frac{1 - 2\nu}{E} (\sigma_x + \sigma_y + \sigma_z)$$

Adding and subtracting $v \frac{\sigma_x}{E}$ from the first equation,

$$\varepsilon_x = \frac{1+v}{E}\sigma_x - \frac{v}{E}(\sigma_x + \sigma_y + \sigma_z)$$

Similar expressions can be obtained for ε_y , and ε_z .

From the relationship for γ_{yz} and Eq. 1.12,

$$\tau_{yz} = \frac{E}{2(1+v)} \gamma_{yz}$$
 etc.

Above relations can be written in the form

$$\sigma = \mathbf{D}\varepsilon$$

where **D** is the material property matrix defined in Eq. 1.15.

1.2 Plane strain condition implies that

$$\varepsilon_z = 0 = -v \frac{\sigma_x}{E} - v \frac{\sigma_y}{E} + \frac{\sigma_z}{E}$$

which gives

$$\sigma_z = \nu \left(\sigma_x + \sigma_y \right)$$

We have, $\sigma_x = 20000 \text{ psi}$ $\sigma_y = -10000 \text{ psi}$ $E = 30 \times 10^6 \text{ psi}$ v = 0.3. On substituting the values,

$$\sigma_z = 3000 \, \mathrm{psi}$$

1.3 Displacement field

$$u = 10^{-4} \left(-x^2 + 2y^2 + 6xy \right)$$

$$v = 10^{-4} \left(3x + 6y - y^2 \right)$$

$$\frac{\partial u}{\partial x} = 10^{-4} \left(-2x + 6y \right) \quad \frac{\partial u}{\partial y} = 10^{-4} \left(4y + 6x \right)$$

$$\frac{\partial v}{\partial x} = 3 \times 10^{-4} \qquad \frac{\partial v}{\partial y} = 10^{-4} \left(6 + 2y \right)$$

$$\varepsilon = \begin{cases} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{cases}$$
at $x = 1, y = 0$

$$\varepsilon = 10^{-4} \begin{cases} -2 \\ 6 \\ 9 \end{cases}$$

1.4 On inspection, we note that the displacements u and v are given by

$$u = 0.1 y + 4$$
$$v = 0$$

It is then easy to see that

$$\varepsilon_{x} = \frac{\partial u}{\partial x} = 0$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} = 0$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0.1$$

1.5 The displacement field is given as

$$u = 1 + 3x + 4x^3 + 6xy^2$$
$$v = xy - 7x^2$$

(a) The strains are then given by

$$\varepsilon_{x} = \frac{\partial u}{\partial x} = 3 + 12x^{2} + 6y^{2}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} = x$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 12xy + y - 14x$$

(b) In order to draw the contours of the strain field using MATLAB, we need to create a script file, which may be edited as a text file and save with ".m" extension. The file for plotting ε_x is given below

```
file "problp5b.m"
    [X,Y] = meshgrid(-1:.1:1,-1:.1:1);
    Z = 3.+12.*X.^2+6.*Y.^2;
    [C,h] = contour(X,Y,Z);
    clabel(C,h);
```

On running the program, the contour map is shown as follows:

Contours of ε_x

Contours of ε_y and γ_{xy} are obtained by changing Z in the script file. The numbers on the contours show the function values.

(c) The maximum value of ε_x is at any of the corners of the square region. The maximum value is 21.

1.6

$$\sigma_{x} = 40 \text{ MPa} \quad \sigma_{y} = 20 \text{ MPa} \quad \sigma_{z} = 30 \text{ MPa}$$

$$\tau_{yz} = -30 \text{ MPa} \quad \tau_{xz} = 15 \text{ MPa} \quad \tau_{xy} = 10 \text{ MPa}$$

$$\mathbf{n} = \left[\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{\sqrt{2}}\right]^{\mathrm{T}}$$
From Eq. 1.8 we get
$$T_{x} = \sigma_{x} n_{x} + \tau_{xy} n_{y} + \tau_{xz} n_{z}$$

$$= 35.607 \text{ MPa}$$

$$T_{y} = \tau_{xy} n_{x} + \sigma_{y} n_{y} + \tau_{yz} n_{z}$$

$$= -6.213 \text{ MPa}$$

$$T_{z} = \tau_{xz} n_{x} + \tau_{yz} n_{y} + \sigma_{z} n_{z}$$

$$= 13.713 \text{ MPa}$$

$$\sigma_{n} = T_{x} n_{x} + T_{y} n_{y} + T_{z} n_{z}$$

$$= 24.393 \text{ MPa}$$

1.7 From the derivation made in P1.1, we have

$$\sigma_x = \frac{E}{(1+v)(1-2v)} [(1-v)\varepsilon_x + v\varepsilon_y + v\varepsilon_z]$$
which can be written in the form
$$\sigma_x = \frac{E}{(1-2v)\varepsilon_x + v\varepsilon_z}$$

$$\sigma_{x} = \frac{E}{(1+\nu)(1-2\nu)} [(1-2\nu)\varepsilon_{x} + \nu\varepsilon_{y}]$$

and

$$\tau_{yz} = \frac{E}{2(1+v)} \gamma_{yz}$$

Lame's constants λ and μ are defined in the expressions

$$\sigma_x = \lambda \varepsilon_v + 2\mu \varepsilon_x$$

$$\tau_{yz} = \mu \gamma_{yz}$$

On inspection,

$$\lambda = \frac{E\nu}{\left(1 + \nu\right)\left(1 - 2\nu\right)}$$

$$\mu = \frac{E}{2(1+\nu)}$$

 μ is same as the shear modulus G.

1.8

$$\varepsilon = 1.2 \times 10^{-5}$$

$$\Delta T = 30^{\circ} C$$

$$E = 200 \text{ GPa}$$

$$\alpha = 12 \times 10^{-6} / {}^{\circ} C$$

$$\varepsilon_0 = \alpha \Delta T = 3.6 \times 10^{-4}$$

$$\sigma = E(\varepsilon - \varepsilon_0) = -69.6 \text{ MPa}$$

1.9

$$\varepsilon_x = \frac{du}{dx} = 1 + 2x^2$$

$$\delta = \int_0^L \frac{du}{dx} dx = \left(x + \frac{2}{3}x^3\right)\Big|_0^L$$

$$= L\left(1 + \frac{2}{3}L^2\right)$$

1.10 Following the steps of Example 1.1, we have

$$\begin{bmatrix} (80+40+50) & -80 \\ -80 & 80 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} 60 \\ 50 \end{bmatrix}$$

Above matrix form is same as the set of equations:

$$170 q_1 - 80 q_2 = 60$$
$$-80 q_1 + 80 q_2 = 50$$

Solving for q_1 and q_2 , we get

$$q_1 = 1.222 \text{ mm}$$

$$q_2 = 1.847 \text{ mm}$$

1.11

The potential energy Π is given by

$$\Pi = \frac{1}{2} \int_{0}^{2} EA \left(\frac{du}{dx}\right)^{2} dx - \int_{0}^{2} ugA dx$$

Consider the polynomial from Example 1.2,

$$u = a_3 (-2x + x^2)$$

$$\frac{du}{dx} = (-2 + 2x)a_3 = 2(-1 + x)a_3$$

On substituting the above expressions and integrating, the first term of becomes

$$2a_3^2\left(\frac{2}{3}\right)$$

and the second term

$$\int_{0}^{2} ugA dx = \int_{0}^{2} u dx = a_{3} \left(-x^{2} + \frac{x^{3}}{3} \right) \Big|_{0}^{2}$$
$$= -\frac{4}{3} a_{3}$$

Thus

$$\Pi = \frac{4}{3} \left(a_3^2 + a_3 \right)$$

$$\frac{\partial \Pi}{\partial a_3} = 0 \Rightarrow a_3 = -\frac{1}{2}$$

this gives $u_{x=1} = -\frac{1}{2}(-2+1) = 0.5$

1.12

We use the displacement field defined by $u = a_0 + a_1x + a_2x^2$.

$$u = 0$$
 at $x = 0 \Rightarrow a_0 = 0$

$$u = 0$$
 at $x = 1 \implies a_1 + a_2 = 0 \implies a_2 = -a_1$

We then have $u = a_1x(1-x)$, and $du/dx = a_1(1-x)$.

The potential energy is now written as

$$\Pi = \frac{1}{2} \int_{0}^{1} \left(\frac{du}{dx}\right)^{2} dx - \int_{0}^{1} fu dx$$

$$= \frac{1}{2} \int_{0}^{1} a_{1}^{2} (1 - 2x)^{2} dx - \int_{0}^{1} x^{3} a_{1} x (1 - x) dx$$

$$= \frac{1}{2} \int_{0}^{1} a_{1}^{2} (1 - 4x + 4x^{2}) dx - \int_{0}^{1} a_{1} (x^{4} - x^{5}) dx$$

$$= \frac{1}{2} a_{1}^{2} \left(1 - \frac{4}{2} + \frac{4}{3}\right) - a_{1} \left(\frac{1}{5} - \frac{1}{6}\right)$$

$$= \frac{a_{1}^{2}}{6} - \frac{a_{1}}{30}$$

$$\frac{\partial \Pi}{\partial a_{1}} = 0 \implies \frac{a_{1}}{3} - \frac{1}{30} = 0$$

This yields, $a_1 = 0.1$

Displacemen u = 0.1x(1 - x)

Stress
$$\sigma = Edu/dx = 0.1(1-x)$$

1.13 Let u_1 be the displacement at x = 200 mm. Piecewise linear displacement that is continuous in the interval $0 \le x \le 500$ is represented as shown in the figure.

$$0 \le x \le 200$$

 $u = 0 \text{ at } x = 0 \implies a_1 = 0$
 $u = u_1 \text{ at } x = 200 \implies a_2 = u_1/200$

$$\Rightarrow u = (u_{1}/200)x \qquad du/dx = u_{1}/200$$

$$200 \le x \le 500$$

$$u = 0 \quad \text{at } x = 500 \quad \Rightarrow \quad a_{3} + 500 \quad a_{4} = 0$$

$$u = u_{1} \quad \text{at } x = 200 \quad \Rightarrow \quad a_{3} + 200 \quad a_{4} = u_{1}$$

$$\Rightarrow \quad a_{4} = -u_{1}/300 \qquad a_{3} = (5/3)u_{1}$$

$$\Rightarrow \quad u = (5/3)u_{1} - (u_{1}/300)x \qquad du/dx = -u_{1}/200$$

$$\Pi = \frac{1}{2} \int_{0}^{200} E_{al} A_{1} \left(\frac{du}{dx}\right)^{2} dx + \frac{1}{2} \int_{200}^{500} E_{st} A_{2} \left(\frac{du}{dx}\right)^{2} dx - 10000u_{1}$$

$$\Pi = \frac{1}{2} E_{al} A_{1} \left(\frac{u_{1}}{200}\right)^{2} 200 + \frac{1}{2} E_{st} A_{2} \left(-\frac{u_{1}}{300}\right)^{2} 300 - 10000u_{1}$$

$$= \frac{1}{2} \left(\frac{E_{al} A_{1}}{200} + \frac{E_{st} A_{2}}{300}\right) u_{1}^{2} - 10000u_{1}$$

$$\frac{\partial \Pi}{\partial u_1} = 0 \implies \left(\frac{E_{al}A_1}{200} + \frac{E_{sl}A_2}{300}\right)u_1 - 10000 = 0$$

Note that using the units MPa (N/mm²) for modulus of elasticity and mm² for area and mm for length will result in displacement in mm, and stress in MPa.

Thus, $E_{al} = 70000 \text{ MPa}$, $E_{st} = 200000$, and $A_1 = 900 \text{ mm}^2$, $A_2 = 1200 \text{ mm}^2$. On substituting these values into the above equation, we get

$$u_1 = 0.009 \text{ mm}$$

This is precisely the solution obtained from strength of materials approach

1.14

In the Galerkin method, we start from the equilibrium equation

$$\frac{d}{dx}EA\frac{du}{dx} + g = 0$$

Following the steps of Example 1.3, we get

$$\int_{0}^{2} -EA \frac{du}{dx} \frac{d\phi}{dx} dx + \int_{0}^{2} g\phi dx$$

Introducing

$$u = (2x - x^2)u_1, \text{ and}$$

$$\phi = (2x - x^2)\phi_1$$

where u_1 and ϕ_1 are the values of u and ϕ at x = 1 respectively,

$$\phi_1 \left[-u_1 \int_0^2 (1-2x)^2 dx + \int_0^2 (2x-x^2) dx \right] = 0$$

On integrating, we get

$$\phi_1\left(-\frac{8}{3}u_1+\frac{4}{3}\right)=0$$

This is to be satisfied for every ϕ_1 , which gives the solution

$$u_1 = 0.5$$

1.15 We use

$$u = a_1 + a_2 x + a_3 x^2 + a_4 x^3$$

 $u = 0$ at $x = 0$
 $u = 0$ at $x = 2$

This implies that

$$0 = a_1$$
$$0 = a_1 + 2a_2 + 4_3 + 8a_4$$

and

$$u = a_3(x^2 - 2x) + a_4(x^3 - 4x)$$
$$\frac{du}{dx} = 2a_3(x - 1) + a_4(3x^2 - 4)$$

 a_3 and a_4 are considered as independent variables in

$$\Pi = \frac{1}{2} \int_{0}^{2} \left[2a_3(x-1) + a_4(3x^2 - 4) \right]^2 dx - 2(-a_3 - 3a_4)$$

on expanding and integrating the terms, we get

$$\Pi = 1.333a_3^2 + 12.8a_4^2 + 8a_3a_4 + 2a_3 + 6a_4$$

We differentiate with respect to the variables and equate to zero.

$$\frac{\partial \Pi}{\partial a_3} = 2.667a_3 + 8a_4 + 2 = 0$$

$$\frac{\partial \Pi}{\partial a_4} = 8a_3 + 25.6a_4 + 6 = 0$$