
Chapter 1 Solutions

Section 1.1

A Practice Problems
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A17 (a) 2~v − 3~w =
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4
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6
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(b) −3(~v + 2~w) + 5~v = −3
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5
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(c) We have~w − 2~u = 3~v , so 2~u = ~w − 3~v or ~u = 1
2(~w − 3~v). Thisgives

~u =
1
2









































2
−1
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−





















3
6
−6









































=
1
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9
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−7/2

9/2





















(d) We have~u − 3~v = 2~u , so~u = −3~v =





















−3
−6

6





















.

A18 (a) 1
2~v +

1
2~w =
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(b) 2(~v + ~w) − (2~v − 3~w) = 2
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(c) We have~w − ~u = 2~v , so~u = ~w − 2~v . This gives~u =





















5
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−





















6
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.

(d) We have1
2~u +

1
3~v = ~w, so 1

2~u = ~w −
1
3~v , or~u = 2~w − 2

3~v =
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.
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A19

~PQ = ~OQ − ~OP =
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3
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A20 The equation of the line is~x =

[

3
4

]

+ t

[

−5
1

]

, t ∈ R

A21 The equation of the line is~x =

[

2
3

]

+ t

[

−4
−6

]

, t ∈ R

A22 The equation of the line is~x =





















2
0
5





















+ t





















4
−2
−11





















, t ∈ R

A23 The equation of the line is~x =





















4
1
5





















+ t





















−2
1
2





















, t ∈ R

For ProblemsA24 - A28, alternative correct answers are possible.

A24 Thedirection vector~d of the line is given by the directed line segment joining the two points:

~d =

[

2
−3

]

−
[

−1
2

]

=

[

3
−5

]

. This, along with one of the points, may be used to obtain an equation for

the line

~x =

[

−1
2

]

+ t

[

3
−5

]

, t ∈ R

A25 The direction vector~d of the line is given by the directed line segment joining the two points:

~d =

[

−2
−1

]

−
[

4
1

]

=

[

−6
−2

]

. This, along with one of the points, may be used to obtain an equation for the

line

~x =

[

4
1

]

+ t

[

−6
−2

]

, t ∈ R
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A26 Thedirection vector~d of the line is given by the directed line segment joining the two points:

~d =





















−2
1
0





















−





















1
3
−5





















=





















−3
−2

5





















. This, along with one of the points, may be used to obtain an equation for

the line

~x =





















1
3
−5





















+ t





















−3
−2

5





















, t ∈ R

A27 The direction vector~d of the line is given by the directed line segment joining the two points:

~d =





















4
2
2





















−





















−2
1
1





















=





















6
1
1





















. This, along with one of the points, may be used to obtain an equation for the

line

~x =





















−2
1
1





















+ t





















6
1
1





















, t ∈ R

A28 The direction vector~d of the line is given by the directed line segment joining the two points:~d =




















−1
1

1/3





















−





















1/2
1/4
1





















=





















−3/2
3/4
−2/3





















. This, along with one of the points, may be used to obtain an equation for the

line

~x =





















1/2
1/4
1





















+ t





















−3/2
3/4
−2/3





















, t ∈ R

A29 The direction vector~d of the line is given by the directed line segment joining the two points:

~d =

[

2
−3

]

−
[

−1
2

]

=

[

3
−5

]

.

Hence, the parametric equation of the line is















x1 = −1+ 3t

x2 = 2− 5t,
t ∈ R.

A scalar equation isx2 = 2+ −5
3 (x1 − (−1)) = −5

3 x1 +
1
3.

A30 Thedirection vector is~d =

[

2
2

]

−
[

1
1

]

=

[

1
1

]

.

Hence, the parametric equation of the line is















x1 = 1+ t

x2 = 1+ t,
t ∈ R.

A scalar equation isx2 = 1+ (x1 − 1) = x1.

A31 The direction vector is~d =

[

3
0

]

−
[

1
0

]

=

[

2
0

]

.

Hence, the parametric equation of the line is















x1 = 1+ 2t

x2 = 0+ 0t,
t ∈ R.

A scalar equation isx2 = 0+ 0(x1 − 1) = 0.
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A32 Thedirection vector is~d =

[

−1
5

]

−
[

1
3

]

=

[

−2
2

]

.

Hence, the parametric equation of the line is















x1 = 1− 2t

x2 = 3+ 2t,
t ∈ R.

A scalar equation isx2 = 3+ (−1)(x1 − 1) = −x1 + 4.

A33 (a) LetP, Q, andR be three points inRn, with corresponding vectors~p , ~q , and~r. If P, Q, andR are
collinear, then the directed line segments~PQ and ~PR should define the same line. That is, the
direction vector of one should be a non-zero scalar multiple of the direction vector of the other.
Therefore, ~PQ = t ~PR, for somet ∈ R.

(b) We have ~PQ =

[

4
1

]

−
[

1
2

]

=

[

3
−1

]

and ~PR =

[

−5
4

]

−
[

1
2

]

=

[

−6
2

]

= −2 ~PQ, so they are collinear.

(c) We have ~S T =





















3
−2

3





















−





















1
0
1





















=





















2
−2

2





















and ~S U =





















−3
4
−1





















−





















1
0
1





















=





















−4
4
−2





















. Therefore, the pointsS , T , and

U are not collinear because~S U , t ~S T for any real numbert.

A34 For V2: ~x + ~y =

[

x1

x2

]

+

[

y1

y2

]

=

[

x1 + y1

x2 + y2

]

=

[

y1 + x1

y2 + x2

]

=

[

y1

y2

]

+

[

x1

x2

]

= ~y + ~x

For V8:

(s + t)~x = (s + t)

[

x1

x2

]

=

[

(s + t)x1

(s + t)x2

]

=

[

sx1 + tx1

sx2 + tx2

]

=

[

sx1

sx2

]

+

[

tx1

tx2

]

= s

[

x1

x2

]

+ t

[

x1

x2

]

= s~x + t~x

A35 We get that~F1 =

[

450
0

]

and ~F2 =

[

25
25
√

3

]

. Thus,the net force is~F =

[

475
25
√

3

]

.

B Homework Problems

B1
[

0
4

]

B2
[

−5
3

]

B3
[

2
6

]

B4
[

5
16

]

B5
[

5
15

]

B6
[

−1
−2

]

B7
[

15
−10

]

B8
[

3/4
19/4

]

B9
[

2√
2−
√

18

]

B10





















0
−3
−9





















B11





















1
4
−1





















B12





















4
4
2





















B13





















3
6

15





















B14





















0
0
0





















B15





















0
0
0





















B16





















3+
√

2
0
−1





















B17 (a)





















2
16
11





















(b)





















10
−22
−13





















(c)





















2
10
7





















(d)





















−4
1
0
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B18 (a)





















11
25
9





















(b)





















1
3/2
11/4





















(c) ~u =





















−1
−3

1





















(d) ~u =





















5/3
11/3
5/3





















B19 ~PQ =





















3
1
−1





















, ~PR =





















−4
0
−3





















, ~PS =





















5
−6

2





















, ~QR =





















−7
−1
−2





















, ~S R =





















−9
6
−5





















B20 ~PQ =





















6
2
2





















, ~PR =





















0
−4

1





















, ~PS =





















5
−2

0





















, ~QR =





















−6
−6
−1





















, ~S R =





















−5
−2

1





















B21 ~x =
[

2
−1

]

+ t

[

−3
2

]

, t ∈ R B22 ~x = t





















2
2
1





















, t ∈ R

B23 ~x =
[

3
1

]

+ t

[

1
2

]

, t ∈ R B24 ~x =





















1
−1

2





















+ t





















1
1
0





















, t ∈ R

B25 ~x =





















1
1
1





















+ t





















1
0
1





















, t ∈ R B26 ~x =





















−2
3
1





















+ t





















2
3
1





















, t ∈ R

B27 ~x =
[

2
4

]

+ t

[

−1
−2

]

, t ∈ R B28 ~x =
[

−2
5

]

+ t

[

1
−6

]

, t ∈ R

B29 ~x = t





















1
3
2





















, t ∈ R B30 ~x =





















0
1
4





















+ t





















−1
1
−2





















, t ∈ R

B31 ~x =





















−2
6
1





















+ t





















0
−1

0





















, t ∈ R B32 ~x =





















1
2

1/2





















+ t





















−1/2
−5/3
−1/2





















, t ∈ R

B33















x1 = 2+ t

x2 = 5− 2t,
t ∈ R; x2 = 5− 2(x1 − 2). B34















x1 = 3+ 3t

x2 = −1+ 2t,
t ∈ R; x2 = −1+ 2

3(x1 − 3).

B35















x1 = t

x2 = 3− 8t,
t ∈ R; x2 = 3− 8x1. B36















x1 = −3+ 7t

x2 = 1,
t ∈ R; x2 = 1.

B37















x1 = 2− 2t

x2 = −3t,
t ∈ R; x2 =

3
2(x1 − 2). B38















x1 = 5+ t

x2 = −2+ 5t,
t ∈ R; x2 = −2+ 5(x1 − 5).

B39 collinear B40 not collinear B41 collinear
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C Conceptual Problems

C1 (a) We need to findt1 andt2 such that

[

3
−2

]

= t1

[

1
1

]

+ t2

[

1
−1

]

=

[

t1 + t2
t1 − t2

]

That is, we need to solve the two equations in two unknowns
t1+ t2 = 3 andt1− t2 = −2. Using substitution and/or elimina-
tion we find thatt1 = 1

2 andt2 = 5
2.

x
1

x
2

1

−1

1

1

3

−2

(b) We use the same approach as in part (a). We need to findt1 andt2 suchthat
[

x1

x2

]

= t1

[

1
1

]

+ t2

[

1
−1

]

=

[

t1 + t2
t1 − t2

]

Solving t1 + t2 = x1 andt1 − t2 = x2 by substitution and/or elimination givest1 = 1
2(x1 + x2) and

t2 = 1
2(x1 − x2).

(c) We havex1 =
√

2 andx2 = π, sowe gett1 = 1
2(
√

2+ π) andt2 = 1
2(
√

2− π).

C2 (a) ~PQ + ~QR + ~RP can be described informally as “start atP and move toQ, then move fromQ to
R, then fromR to P; the net result is a zero change in position.”

(b) We have ~PQ = ~q − ~p , ~QR = ~r − ~q , and ~RP = ~p − ~r. Thus,

~PQ + ~QR + ~RP = ~q − ~p + ~r − ~q + ~p − ~r = ~0

C3 Let ~x =





















x1

x2

x3





















. Then

s(t~x ) = s





















tx1

tx2

tx3





















=





















s(tx1)
s(tx2)
s(tx3)





















=





















(st)x1

(st)x2

(st)x3





















= (st)





















x1

x2

x3





















= (st)~x

C4 Let ~x =





















x1

x2

x3





















and~y =





















y1

y2

y3





















. Then,

s(~x + ~y ) = s





















x1 + y1

x2 + y2

x3 + y3





















=





















s(x1 + y1)
s(x2 + y2)
s(x3 + y3)





















=





















sx1 + sy1

sx2 + sy2

sx3 + sy3





















= s





















x1

x2

x3





















+ s





















y1

y2

y3





















= s





















x1

x2

x3





















+ s





















y1

y2

y3





















= s~x + s~y

C5 Assume that~x = ~p + t~d, t ∈ R, is a line inR2 passing through the origin. Then, there exists a real

numbert1 such that

[

0
0

]

= ~p + t1~d. Hence,~p = −t1~d and so~p is a scalar multiple of~d. On the other

hand, assume that~p is a scalar multiple of~d. Then, there exists a real numbert1 such that~p = t1~d.
Hence, if we taket = −t1, we get that the line with vector equation~x = ~p + t~d passes through the

point ~p + (−t1)~d = t1~d − t1~d = ~0 =

[

0
0

]

as required.
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C6 If the plane passes through the origin, then there existss, t ∈ R such that

~0 = ~p + s~u + t~v

Hence,
~p = −s~u − t~v

and so~p is a linear combination of~u and~v .
On the other hand, if~p = a~u + b~v , then takings = −a andt = −b gives

~x = ~p + s~u + t~v = ~p − a~u − b~v = ~0

and hence the plane passes through the origin.

C7 A vector equation for the line segment fromO to R is ~x = s ~OR, 0 ≤ s ≤ 1. Similarly, a vector
equation for the line segment fromP to Q is ~x = ~p + t ~PQ, 0 ≤ t ≤ 1. The two lines intersect when

s ~OR = ~p + t ~PQ

SinceO, P, Q, R form a parallelogram, we know that~r = ~p + ~q . Hence, we get

s(~r − ~0) = ~p + t(~q − ~p)

s(~p + ~q ) = ~p + t~q − t~p

(s + t − 1)~p = (−s + t)~q

~p and~q cannot be scalar multiples of each other, as otherwise we would not have a parallelogram.
Thus, for this equation to hold, we must haves + t − 1 = 0 and−s + t = 0. Solving, we find that
s = t = 1

2 asrequired.

C8 The line segment fromA to B is ~x =

[

a1

a2

]

+ t

[

b1 − a1

b2 − a2

]

, 0 ≤ t ≤ 1. Thus, the point 1/3 of the way from

A to B is

~x =

[

a1

a2

]

+
1
3

[

b1 − a1

b2 − a2

]

=

[2
3a1 +

1
3b1

2
3a2 +

1
3b2

]

Hence,the coordinates are
(

2
3a1 +

1
3b1,

2
3a2 +

1
3b2

)

.

C9 (a) Parametric equations for the plane are



























x1 = 2+ s + t

x2 = 1+ 2s + t

x3 = 3s + 2t

s, t ∈ R.

(b) Subtracting the second equation from the first equation givesx1 − x2 = 1− s, sos = 1− x1 + x2.

Then, the second equation gives

t = x2 − 1− 2s = x2 − 1− 2(1− x1 + x2) = −3+ 2x1 − x2

The third equation now gives

x3 = 3(1− x1 + x2) + 2(−3+ 2x1 − x2) = −3+ x1 + x2

Hence, a scalar equation for the plane isx1 + x2 − x3 = 3.
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C10 (a) We solveax1 + bt = c for x1 to getx1 =
c
a −

b
a t. Thus,parametric equations for the line are















x1 =
c
a −

b
a t

x2 = t
t ∈ R

(b) We have

[

x1

x2

]

=

[

c
a −

b
a t

t

]

=

[

c/a
0

]

+ t

[

−b/a
1

]

, t ∈ R

(c) From our work in (b), a vector equation for the line is

~x =

[

5/2
0

]

+ t

[

−3/2
1

]

, t ∈ R

(d) Parametric equations would be














x1 = 3

x2 = t
t ∈ R

Thus, we have
[

x1

x2

]

=

[

3
t

]

=

[

3
0

]

+ t

[

0
1

]

, t ∈ R

C11 If P(p1, p2) is on the line, then there existst1 ∈ R such that

[

p1

p2

]

= t1

[

d1

d2

]

=

[

td1

td2

]

Thus,p1 = td1 andp2 = td2. If d1 = 0, thenp1 = 0 and hence we havep1d2 = 0 = p2d1. If d1 , 0,
thent = p1

d1
andhence

p2 =
p1

d1
d2⇒ p2d1 = p1d2

On the other hand, assumep1d2 = p2d1. If d1 = 0, thenp1 = 0 (if d2 = 0, thenL would not be a
line). Hence, takingt2 =

p2

d2
gives

t2

[

d1

d2

]

=

[

0
t2d2

]

=

[

0
p2

]

=

[

p1

p2

]

If d1 , 0, then we taket3 =
p1

d1
to get

t3

[

d1

d2

]

=

[

t3d1

t3d2

]

=

[

p1
p1

d1
d2

]

=

[

p1

p2

]
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C12 Let the two lines be~x = ~a+ s~b, s ∈ R, and~x = ~c+ t~d, t ∈ R. Since the lines are not parallel, we have
~d , k~b for anyk. To determine whether there is a point of intersection, we try to solve~a+ s~b = ~c+ t~d
for s andt. The components of this vector equation are

b1s − d1t = c1 − a1

b2s − d2t = c2 − a2

Multiply the first equation byd2 and the second equation byd1 and subtract the second from the first
to get

(b1d2 − b2d1)s = d2(c1 − a1) − d1(c2 − a2)

Now b1d2 − b2d1 , 0 since~d , k~b for anyk. Thus, we can solve this equation fors and then solve
for t. Thus, there is a point of intersection.

Section 1.2

A Practice Problems

A1 Consider

[

3
1

]

= c1

[

1
3

]

+ c2

[

1
−1

]

=

[

c1 + c2

3c1 − c2

]

. This gives

3 = c1 + c2

1 = 3c1 − c2

Solving we find thatc1 = 1 andc2 = 2. Thus,~x ∈ SpanB.

A2 Consider

[

8
−4

]

= c1

[

−2
1

]

=

[

−2c1

c1

]

. Takingc1 = −4 satisfies the equation. Thus,~x ∈ SpanB.

A3 Consider

[

6
3

]

= c1

[

−2
1

]

=

[

−2c1

c1

]

. For the first component, we require thatc1 = −3, but this does

satisfy the second component. Thus,~x < SpanB.

A4 Consider

[

2
5

]

= c1

[

2
−1

]

+ c2

[

1
2

]

=

[

2c1 + c2

−c1 + 2c2

]

. This gives

2 = 2c1 + c2

5 = −c1 + 2c2

Solving we find thatc1 = −1/5 andc2 = 12/5. Thus,~x ∈ SpanB.

A5 Consider





















1
2
−1





















= c1





















1
1
0





















+ c2





















0
1
1





















+ c3





















1
0
1





















=





















c1 + c3

c1 + c2

c2 + c3





















. This gives

1 = c1 + c3

2 = c1 + c2

−1 = c2 + c3

Solving we find thatc1 = 2, c2 = 0, andc3 = −1. Thus,~x ∈ SpanB.
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A6 Consider





















0
1
3





















= c1





















1
2
2





















+ c2





















0
−1

1





















+ c3





















1
0
4





















=





















c1 + c3

2c1 − c2

2c1 + c2 + 4c3





















. This gives

0 = c1 + c3

1 = 2c1 − c2

3 = 2c1 + c2 + 4c3

Adding the second and third equations gives 4= 4c1 + 4c3. Thus,c1 + c3 = 1 which contradicts the
first equation. Hence,~x < SpanB.

A7 Consider
[

0
0

]

= c1

[

1
2

]

+ c2

[

1
3

]

+ c3

[

1
4

]

=

[

c1 + c2 + c3

2c1 + 3c2 + 4c3

]

This gives

c1 + c2 + c3 = 0

2c1 + 3c2 + 4c3 = 0

Subtracting two times the first equation from the second equation givesc2+2c3 = 0. Thus, if we take
c3 = 1, we getc2 = −2 and hencec1 = 1. Therefore, by definition, the set is linearly dependent.

A8 Consider
[

0
0

]

= c1

[

3
1

]

+ c2

[

−1
3

]

=

[

3c1 − c2

c1 + 3c2

]

This gives

3c1 − c2 = 0

c1 + 3c2 = 0

Solving we find that the only solution isc1 = c2 = 0, so the set is linearly independent.

A9 Consider
[

0
0

]

= c1

[

1
1

]

+ c2

[

1
0

]

=

[

c1 + c2

c1

]

This gives

c1 + c2 = 0

c1 = 0

Solving we find that the only solution isc1 = c2 = 0, so the set is linearly independent.

A10 Observe that 2

[

2
3

]

+

[

−4
−6

]

=

[

0
0

]

, so the set is linearly dependent.

A11 Consider




















0
0
0





















= c1





















1
2
1





















=





















c1

2c1

c1





















This givesc1 = 0, so the set is linearly independent.
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A12 Observe that

0





















1
−3
−2





















+ 0





















4
6
1





















+ 1





















0
0
0





















=





















0
0
0





















so the set is linearly dependent.

A13 Observe that

0





















1
1
0





















+ 2





















1
2
−1





















+ 1





















−2
−4

2





















=





















0
0
0





















so the set is linearly dependent.

A14 Consider




















0
0
0





















= c1





















1
−2

1





















+ c2





















2
3
4





















+ c3





















0
−1
−2





















=





















c1 + 2c2

−2c1 + 3c2 − c3

c1 + 4c2 − 2c3





















This gives

c1 + 2c2 = 0

−2c1 + 3c2 − c3 = 0

c1 + 4c2 − 2c3 = 0

Subtracting the first equation from the third equation gives 2c2−2c3 = 0. Hence,c2 = c3. The second
equation then gives 0= −2c1 + 3c2 − c2 = −2c1 + 2c2. Thus,c1 = c2. Therefore, the first equation
givesc1 = c2 = 0 and hencec3 = c2 = 0. So, the set is linearly independent.

A15 Since the spanning set cannot be reduced, it is a line with vector equation~x = s

[

1
0

]

, s ∈ R.

A16 Since

[

2
−2

]

= −2

[

−1
1

]

, we have Span

{[

−1
1

]

,

[

2
−2

]}

= Span

{[

−1
1

]}

. Since the spanning set cannot be

reduced, it is a line with vector equation~x = s

[

−1
1

]

, s ∈ R.

A17 Since





















−2
6
−2





















= −2





















1
−3

1





















, we have Span







































1
−3

1





















,





















−2
6
−2







































= Span







































1
−3

1







































. Since the spanning set cannot be

reduced, it is a line with vector equation~x = s





















1
−3

1





















, s ∈ R.

A18 This is just two points inR3. A vector equation would be~x =





















1
−3

1





















or ~x =





















−2
6
−2





















.

A19 Since neither vector is a scalar multiple of the other, the set cannot be reduced. Thus, it is a plane

with vector equation~x = s





















1
0
−2





















+ t





















2
1
−1





















, s, t ∈ R.
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A20 It is just the origin with vector equation~x = ~0.

A21 B does not form a basis forR2 since it does not spanR2. For example, the vector

[

1
0

]

is not in SpanB.

A22 We will proveB is a basis. Consider
[

x1

x2

]

= c1

[

2
3

]

+ c2

[

1
0

]

=

[

2c1 + c2

3c1

]

This gives

2c1 + c2 = x1

3c1 = x2

Solving, we getc1 =
1
3 x2 andc2 = x1 − 2

3 x2. Hence,B spansR2. Moreover, takingx1 = x2 = 0 gives
the unique solutionc1 = c2 = 0, soB is also linearly independent, and hence is a basis forR

2.

A23 Since 0

[

2
1

]

+ 1

[

0
0

]

=

[

0
0

]

, B is linearly dependent and hence is not a basis.

A24 B does not form a basis forR2 since the vector

[

1
0

]

is not in SpanB.

A25 We will proveB is a basis. Consider
[

x1

x2

]

= c1

[

−1
1

]

+ c2

[

1
3

]

=

[

−c1 + c2

c1 + 3c2

]

This gives

−c1 + c2 = x1

c1 + 3c2 = x2

Solving, we getc1 = −3
4 x1+

1
4 x2 andc2 =

1
4 x1+

1
4 x2. Hence,B spansR2. Moreover, takingx1 = x2 = 0

gives the unique solutionc1 = c2 = 0, soB is also linearly independent, and hence is a basis forR
2.

A26 Since 1

[

−1
1

]

+ 1

[

1
3

]

− 2

[

0
2

]

=

[

0
0

]

, B is linearly dependent and hence is not a basis.

A27 Since 0





















1
2
1





















+ 1





















0
0
0





















+ 0





















1
4
3





















=





















0
0
0





















, B is linearly dependent and hence is not a basis.

A28 Consider




















x1

x2

x3





















= c1





















−1
2
−1





















+ c2





















1
1
2





















=





















−c1 + c2

2c1 + c2

−c1 + 2c2





















This gives

−c1 + c2 = x1

2c1 + c2 = x2

−c1 + 2c2 = x3
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Subtractingthe first equation from the second equation gives 3c1 = x2 − x1. Subtracting 2 times

the first equation from the third givesc1 = x3 − 2x1. Hence, for





















x1

x2

x3





















to be in the span, we must

have1
3(x2 − x1) = x3 − 2x1. Since,the vector





















1
1
1





















does not satisfy this condition, it is not in SpanB.

Therefore,B does not spanR3 and hence is not a basis forR3.

A29 We will prove it is a basis. Consider




















x1

x2

x3





















= c1





















1
0
1





















+ c2





















1
0
0





















+ c3





















0
1
2





















=





















c1 + c2

c3

c1 + 2c3





















This gives

c1 + c2 = x1

c3 = x2

c1 + 2c3 = x3

Solving we getc3 = x2, c1 = −2x2+ x3, andc2 = x1+2x2− x3. Hence,B spansR3. Moreover, taking
x1 = x2 = x3 = 0 gives the unique solutionc1 = c2 = c3 = 0, soB is also linearly independent, and
hence is a basis forR3.

A30 We will prove it is a basis. Consider




















x1

x2

x3





















= c1





















1
0
1





















+ c2





















1
1
1





















+ c3





















1
1
0





















=





















c1 + c2 + c3

c2 + c3

c1 + c2





















This gives

c1 + c2 + c3 = x1

c2 + c3 = x2

c1 + c2 = x3

Solving we getc3 = x1 − x3, c2 = −x1 + x2 + x3, andc1 = x1 − x2. Hence,B spansR3. Moreover,
takingx1 = x2 = x3 = 0 gives the unique solutionc1 = c2 = c3 = 0, soB is also linearly independent,
and hence is a basis forR3.

A31 (a) Consider
[

x1

x2

]

= c1

[

1
0

]

+ c2

[

1
1

]

=

[

c1 + c2

c2

]

This gives

c1 + c2 = x1

c2 = x2

Solving, we getc2 = x2 andc1 = x1− x2. Hence,B spansR2. Moreover, takingx1 = x2 = 0 gives
the unique solutionc1 = c2 = 0, soB is also linearly independent, and hence is a basis forR

2.

Copyright © 2020 Pearson Canada Inc.



15

(b) Taking x1 = 1 andx2 = 0 we find that the coordinates of~e1 with respect toB arec1 = 1 and
c2 = 0.

Taking x1 = 0 andx2 = 1 we find that the coordinates of~e2 with respect toB arec1 = −1 and
c2 = 1.

Taking x1 = 1 andx2 = 3 we find that the coordinates of~x with respect toB arec1 = −2 and
c2 = 3.

A32 (a) Consider
[

x1

x2

]

= c1

[

1
1

]

+ c2

[

1
−1

]

=

[

c1 + c2

c1 − c2

]

This gives

c1 + c2 = x1

c1 − c2 = x2

Solving, we getc1 =
1
2 x1 +

1
2 x2 and c2 =

1
2 x1 − 1

2 x2. Hence,B spansR2. Moreover, taking
x1 = x2 = 0 gives the unique solutionc1 = c2 = 0, soB is also linearly independent, and hence
is a basis forR2.

(b) Takingx1 = 1 andx2 = 0 we find that the coordinates of~e1 with respect toB arec1 = 1/2 and
c2 = 1/2.

Taking x1 = 0 andx2 = 1 we find that the coordinates of~e2 with respect toB arec1 = 1/2 and
c2 = −1/2.

Taking x1 = 1 andx2 = 3 we find that the coordinates of~x with respect toB arec1 = 2 and
c2 = −1.

A33 (a) Consider
[

x1

x2

]

= c1

[

1
2

]

+ c2

[

−1
−1

]

=

[

c1 − c2

2c1 − c2

]

This gives

c1 − c2 = x1

2c1 − c2 = x2

Solving, we getc1 = −x1 + x2 and c2 = −2x1 + x2. Hence,B spansR2. Moreover, taking
x1 = x2 = 0 gives the unique solutionc1 = c2 = 0, soB is also linearly independent, and hence
is a basis forR2.

(b) Takingx1 = 1 andx2 = 0 we find that the coordinates of~e1 with respect toB arec1 = −1 and
c2 = −2.

Taking x1 = 0 andx2 = 1 we find that the coordinates of~e2 with respect toB arec1 = 1 and
c2 = 1.

Taking x1 = 1 andx2 = 3 we find that the coordinates of~x with respect toB arec1 = 2 and
c2 = 1.
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A34 Assumethat {~v1,~v2} is linearly independent. For a contradiction, assume without loss of generality
that~v1 is a scalar multiple of~v2. Then~v1 = t~v2 and hence~v1 − t~v2 = ~0. This contradicts the fact that
{~v1,~v2} is linearly independent since the coefficient of~v1 is non-zero.

On the other hand, assume that{~v1,~v2} is linearly dependent. Then there existsc1, c2 ∈ R not both
zero such thatc1~v1 + c2~v2 = ~0. Without loss of generality assume thatc1 , 0. Then~v1 = − c2

c1
~v2 and

hence~v1 is a scalar multiple of~v2.

A35 To prove this, we will prove that both sets are a subset of the other.

Let ~x ∈ Span{~v1,~v2}. Then there existsc1, c2 ∈ R such that~x = c1~v1 + c2~v2. Sincet , 0 we get

~x = c1~v1 +
c2

t
(t~v2)

so~x ∈ Span{~v1, t~v2}. Thus, Span{~v1,~v2} ⊆ Span{~v1, t~v2}.

If ~y ∈ Span{~v1, t~v2}, then there existsd1, d2 ∈ R such that

~y = d1~v1 + d2(t~v2) = d1~v1 + (d2t)~v2 ∈ Span{~v1,~v2}

Hence, we also have Span{~v1, t~v2} ⊆ Span{~v1,~v2}. Therefore, Span{~v1,~v2} = Span{~v1, t~v2}.

B Homework Problems

B1
[

3
2

]

= 5
2

[

1
1

]

+ 1
2

[

1
−1

]

B2 ~x < SpanB

B3
[

2
−2

]

= −2
3

[

−3
3

]

B4
[

1
0

]

= 2
5

[

2
−1

]

+ 1
5

[

1
2

]

B5





















3
1
4





















= 0





















1
1
0





















+ 1





















0
1
1





















+ 3





















1
0
1





















B6 ~x < SpanB

B7 7
2

[

1
1

]

− 1
2

[

3
5

]

=

[

2
1

]

B8 0

[

8
3

]

=

[

0
0

]

B9 Linearly independent B10 −2

[

−2
5

]

=

[

4
−10

]

B11 Linearly independent B12 0





















1
−3

2





















=





















0
0
0





















B13 2





















2
−1

1





















+ 0





















1
5
3





















=





















4
−2

2





















B14 1
2





















4
2
1





















+ 1
2





















2
6
3





















=





















3
4
2





















B15 A line. ~x = s

[

1
0

]

, s ∈ R B16 All of R2. ~x = s

[

1
1

]

+ t

[

2
3

]

, s, t ∈ R

B17 A line. ~x = s

[

1
2

]

, s ∈ R B18 The origin.~x = ~0.
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B19 A line. ~x = s





















3
1
1





















, s ∈ R B20 A line. ~x = s





















2
1
3





















, s ∈ R

B21 A basis B22 Not a basis

B23 A basis B24 A basis

B25 Not a basis B26 A basis

B27 Not A basis B28 A basis

B29 (a) ShowB is a linearly independent spanning set.

(b) The coordinates of~e1 with respect toB arec1 = 1, c2 = 1.

The coordinates of~e2 with respect toB arec1 = 0, c2 = 1.

The coordinates of~x with respect toB arec1 = 2, c2 = 3.

B30 (a) ShowB is a linearly independent spanning set.

(b) The coordinates of~e1 with respect toB arec1 = 3/5,c2 = −1/5.

The coordinates of~e2 with respect toB arec1 = −1/5,c2 = 2/5.

The coordinates of~x with respect toB arec1 = 0, c2 = 1.

B31 (a) ShowB is a linearly independent spanning set.

(b) The coordinates of~e1 with respect toB arec1 = 1/2,c2 = 0.

The coordinates of~e2 with respect toB arec1 = −1/6,c2 = 1/3.

The coordinates of~x with respect toB arec1 = 0, c2 = 1.

B32 (a) ShowB is a linearly independent spanning set.

(b) The coordinates of~e1 with respect toB arec1 = 1/5,c2 = 2/5.

The coordinates of~e2 with respect toB arec1 = −2/5,c2 = 1/5.

The coordinates of~x with respect toB arec1 = −1, c2 = 1.

B33 (a) ShowB is a linearly independent spanning set.

(b) The coordinates of~e1 with respect toB arec1 = −5/13,c2 = −1/13.

The coordinates of~e2 with respect toB arec1 = −3/13,c2 = 2/13.

The coordinates of~x with respect toB arec1 = −14/13,c2 = 5/13.

Section 1.3

A Practice Problems

A1

∥

∥

∥

∥

∥

∥

[

2
−5

]
∥

∥

∥

∥

∥

∥

=
√

22 + (−5)2 =
√

29

A2

∥

∥

∥

∥

∥

∥

[

2/
√

29
−5/
√

29

]
∥

∥

∥

∥

∥

∥

=

√

(2/
√

29)2 + (−5/
√

29)2 =
√

4/29+ 25/29= 1

A3

∥

∥

∥

∥

∥

∥

∥

∥

∥





















1
0
−1





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

12 + 02 + (−1)2 =
√

2
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A4

∥

∥

∥

∥

∥

∥

∥

∥

∥





















2
3
−2





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

22 + 32 + (−2)2 =
√

17

A5

∥

∥

∥

∥

∥

∥

∥

∥

∥





















1
1/5
−3





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

12 + (1/5)2 + (−3)2 =
√

251/5

A6

∥

∥

∥

∥

∥

∥

∥

∥

∥























1/
√

3
1/
√

3
−1/
√

3























∥

∥

∥

∥

∥

∥

∥

∥

∥

=

√

(1/
√

3)2 + (1/
√

3)2 + (−1/
√

3)2 = 1

A7 Thedistance betweenP andQ is ‖ ~PQ‖ =
∥

∥

∥

∥

∥

∥

[

−4
1

]

−
[

2
3

]
∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

[

−6
−2

]
∥

∥

∥

∥

∥

∥

=
√

(−6)2 + (−2)2 = 2
√

10.

A8 Thedistance betweenP andQ is ‖ ~PQ‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−3
1
1





















−





















1
1
−2





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−4
0
3





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

(−4)2 + 02 + 32 = 5.

A9 Thedistance betweenP andQ is ‖ ~PQ‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−3
5
1





















−





















4
−6

1





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−7
11
0





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

(−7)2 + 112 + 02 =
√

170.

A10 Thedistance betweenP andQ is ‖ ~PQ‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥





















4
6
−2





















−





















2
1
1





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥





















2
5
−3





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

22 + 52 + (−3)2 =
√

38.

A11





















1
3
2





















·





















2
−2

2





















= 1(2)+ 3(−2)+ 2(2)= 0. Hence these vectors are orthogonal.

A12





















−3
1
7





















·





















2
−1

1





















= (−3)(2)+ 1(−1)+ 7(1)= 0. Hence these vectors are orthogonal.

A13





















2
1
1





















·





















−1
4
2





















= 2(−1)+ 1(4)+ 1(2)= 4 , 0. Therefore, these vectors are not orthogonal.

A14





















4
1
0





















·





















−1
4
3





















= 4(−1)+ 1(4)+ 0(3)= 0. Hence these vectors are orthogonal.

A15





















0
0
0





















·





















x1

x2

x3





















= 0(x1) + 0(x2) + 0(x3) = 0. Hence these vectors are orthogonal.

A16





















1/3
2/3
−1/3





















·





















3/2
0
−3/2





















= 1
3

(

3
2

)

+ 2
3(0)+

(

−1
3

) (

−3
2

)

= 1. Therefore, these vectors are not orthogonal.
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A17 Thevectors are orthogonal when 0=

[

3
−1

]

·
[

2
k

]

= 3(2)+ (−1)k = 6− k.

Thus, the vectors are orthogonal only whenk = 6.

A18 The vectors are orthogonal when 0=

[

3
−1

]

·
[

k
k2

]

= 3(k) + (−1)(k2) = 3k− k2 = k(3− k).

Thus, the vectors are orthogonal only whenk = 0 or k = 3.

A19 The vectors are orthogonal when 0=





















1
2
3





















·





















3
−k

k





















= 1(3)+ 2(−k) + 3(k) = 3+ k.

Thus, the vectors are orthogonal only whenk = −3.

A20 The vectors are orthogonal when 0=





















1
2
3





















·





















k
k
−k





















= 1(k) + 2(k) + 3(−k) = 0.

Therefore, the vectors are always orthogonal.

A21 The scalar equation of the plane is

0 = ~n · (~x − ~p ) =





















2
4
−1





















·





















x1 + 1
x2 − 2
x3 + 3





















= 2(x1 + 1)+ 4(x2 − 2)+ (−1)(x3 + 3)

= 2x1 + 2+ 4x2 − 8− x3 − 3

9 = 2x1 + 4x2 − x3

A22 The scalar equation of the plane is

0 = ~n · (~x − ~p ) =





















3
0
5





















·





















x1 − 2
x2 − 5
x3 − 4





















= 3(x1 − 2)+ 0(x2 − 5)+ 5(x3 − 4)

= 3x1 − 6+ 5x3 − 20

26= 3x1 + 5x3

A23 The scalar equation of the plane is

0 = ~n · (~x − ~p ) =





















3
−4
1





















·





















x1 − 1
x2 + 1
x3 − 1





















= 3(x1 − 1)+ (−4)(x2 + 1)+ 1(x3 − 1)

= 3x1 − 3− 4x2 − 4+ x3 − 1

8 = 3x1 − 4x2 + x3

A24





















1
−5

2





















×





















−2
1
5





















=





















(−5)(5)− 1(2)
2(−2)− 1(5)

1(1)− (−5)(−2)





















=





















−27
−9
−9
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A25





















2
−3
−5





















×





















4
−2

7





















=





















(−3)(7)− (−5)(−2)
(−5)(4)− 2(7)

2(−2)− (−3)(4)





















=





















−31
−34

8





















A26





















−1
0
−1





















×





















0
4
5





















=





















0(5)− (−1)(4)
(−1)(0)− (−1)(5)

(−1)(4)− 0(0)





















=





















4
5
−4





















A27





















1
2
0





















×





















−1
−3

0





















=





















2(0)− 0(−3)
0(−1)− 1(0)

1(−3)− 2(−1)





















=





















0
0
−1





















A28





















4
−2

6





















×





















−2
1
−3





















=





















(−2)(−3)− 6(1)
6(−2)− 4(−3)

4(1)− (−2)(−2)





















=





















0
0
0





















A29





















3
1
3





















×





















3
1
3





















=





















1(3)− 3(1)
3(3)− 3(3)
3(1)− 1(3)





















=





















0
0
0





















A30 (a) ~u × ~u =





















4(2)− 2(4)
2(−1)− (−1)(2)
(−1)(4)− 4(−1)





















=





















0
0
0





















(b) We have

~u × ~v =





















4(−1)− 2(1)
2(3)− (−1)(−1)
(−1)(1)− 4(3)





















=





















−6
5

−13





















−~v × ~u = −





















1(2)− (−1)(4)
(−1)(−1)− 3(2)

3(4)− 1(−1)





















= −





















6
−5
13





















= ~u × ~v

(c) We have

~u × 3~w =





















−1
4
2





















×





















6
−9
−3





















=





















4(−3)− 2(−9)
2(6)− (−1)(−3)
(−1)(−9)− 4(6)





















=





















6
9

−15





















3(~u × ~w) = 3





















4(−1)− 2(−3)
2(2)− (−1)(−1)
(−1)(−3)− 4(2)





















= 3





















2
3
−5





















=





















6
9

−15
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(d) We have

~u × (~v + ~w) =





















−1
4
2





















×





















5
−2
−2





















=





















4(−2)− 2(−2)
2(5)− (−1)(−2)
(−1)(−2)− 4(5)





















=





















−4
8

−18





















~u × ~v + ~u × ~w =





















−6
5

−13





















+





















2
3
−5





















=





















−4
8

−18





















(e) We have

~u · (~v × ~w) =





















−1
4
2





















·





















1(−1)− (−1)(−3)
(−1)(2)− 3(−1)

3(−3)− 1(2)





















=





















−1
4
2





















·





















−4
1

−11





















= −14

~w · (~u × ~v) =





















2
−3
−1





















·





















−6
5

−13





















= −14

(f) From part (e) we have~u · (~v × ~w) = −14. Then

~v · (~u × ~w) =





















3
1
−1





















·





















2
3
−5





















= 14= −~u · (~v × ~w)

A31 A normal vector for the plane is~n =





















2
3
−1





















×





















4
1
0





















=





















1
−4
−10





















. Thus, a scalar equation for the plane is

x1 − 4x2 − 10x3 = 1(1)− 4(4)− 10(7)= −85

A32 A normal vector for the plane is~n =





















1
1
0





















×





















−2
1
2





















=





















2
−2

3





















. Thus, a scalar equation for the plane is

2x1 − 2x2 + 3x3 = 2(2)− 2(3)+ 3(−1)= −5

A33 A normal vector for the plane is~n =





















2
−2

1





















×





















0
3
1





















=





















−5
−2

6





















. Thus, a scalar equation for the plane is

−5x1 − 2x2 + 6x3 = −5(1)− 2(−1)+ 6(3)= 15
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A34 A normal vector for the plane is~n =





















1
3
2





















×





















−2
4
−3





















=





















−17
−1
10





















. Thus, a scalar equation for the plane is

−17x1 − x2 + 10x3 = −17(0)− (0)+ 10(0)= 0

For ProblemsA35 - A40, alternate answers are possible.

A35 We can rewrite the equation asx3 = −2x1 + 3x2. Thus, a vector equation is




















x1

x2

x3





















=





















x1

x2

−2x1 + 3x2





















= x1





















1
0
−2





















+ x2





















0
1
3





















, x1, x2 ∈ R

A36 We can rewrite the equation asx2 = 5− 4x1 + 2x3. Thus, a vector equation is




















x1

x2

x3





















=





















x1

5− 4x1 + 2x3

x3





















=





















0
5
0





















+ x1





















1
−4

0





















+ x3





















0
2
1





















, x1, x3 ∈ R

A37 We can rewrite the equation asx1 = 1− 2x2 − 2x3. Thus, a vector equation is




















x1

x2

x3





















=





















1− 2x2 − 2x3

x2

x3





















=





















1
0
0





















+ x2





















−2
1
0





















+ x3





















−2
0
1





















, x2, x3 ∈ R

A38 We can rewrite the equation asx1 =
7
3 −

5
3 x2 +

4
3 x3. Thus,a vector equation is





















x1

x2

x3





















=





















7
3 −

5
3 x2 +

4
3 x3

x2

x3





















=





















7/3
0
0





















+ x2





















−5/3
1
0





















+ x3





















4/3
0
1





















, x2, x3 ∈ R

A39 We can rewrite the equation asx2 = 2x1 + 3x3. Thus, a vector equation is




















x1

x2

x3





















=





















x1

2x1 + 3x3

x3





















= x1





















1
2
0





















+ x3





















0
3
1





















, x2, x3 ∈ R

A40 We can rewrite the equation asx2 = 3− 2x1 − 3x3. Thus, a vector equation is




















x1

x2

x3





















=





















x1

3− 2x1 − 3x3

x3





















=





















0
3
0





















+ x1





















1
−2

0





















+ x3





















0
−3

1





















, x1, x3 ∈ R

A41 We have that the vectors~PQ =





















2
−4
−3





















and ~PR =





















0
5
−6





















are vectors in the plane. Hence, a normal vector

for the plane is~n =





















2
−4
−3





















×





















0
5
−6





















=





















39
12
10





















. Then, sinceP(2,1,5) is a point on the plane we get a scalar

equation of the plane is

39x1 + 12x2 + 10x3 = 39(2)+ 12(1)+ 10(5)= 140
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A42 We have that the vectors~PQ =





















−5
−1
−2





















and ~PR =





















−2
3
−5





















are vectors in the plane. Hence, a normal vector

for the plane is~n =





















−5
−1
−2





















×





















−2
3
−5





















=





















11
−21
−17





















. Then, sinceP(3,1,4) is a point on the plane we get a scalar

equation of the plane is

11x1 − 21x2 − 17x3 = 11(3)− 21(1)− 17(4)= −56

A43 We have that the vectors~PQ =





















4
−3
−3





















and ~PR =





















3
−7
−3





















are vectors in the plane. Hence, a normal vector

for the plane is~n =





















4
−3
−3





















×





















3
−7
−3





















=





















−12
3

−19





















. Then, sinceP(−1,4,2) is a point on the plane we get a

scalar equation of the plane is

−12x1 + 3x2 − 19x3 = −12(−1)+ 3(4)− 19(2)= −14

A44 We have that the vectors~PQ =





















−2
0
0





















and ~PR =





















−1
0
−1





















are vectors in the plane. Hence, a normal vector

for the plane is~n =





















−2
0
0





















×





















−1
0
−1





















=





















0
−2

0





















. Then, sinceR(0,0,0) is a point on the plane we get a scalar

equation of the plane is−2x2 = 0 or x2 = 0.

A45 We have that the vectors~PQ =





















3
−3

0





















and ~PR =





















1
1
−1





















are vectors in the plane. Hence, a normal vector

for the plane is~n =





















3
−3

0





















×





















1
1
−1





















=





















3
3
6





















. Then, sinceP(0,2,1) is a point on the plane we get a scalar

equation of the plane is

3x1 + 3x2 + 6x3 = 3(0)+ 3(2)+ 6(1)= 12 orx1 + x2 + 2x3 = 4

A46 We have that the vectors~PQ =





















1
1
2





















and ~PR =





















0
−5

4





















are vectors in the plane. Hence, a normal vector

for the plane is~n =





















1
1
2





















×





















0
−5

4





















=





















14
−4
−5





















. Then, sinceR(1,0,1) is a point on the plane we get a scalar

equation of the plane is

14x1 − 4x2 − 5x3 = 14(1)− 4(0)− 5(1)= 9
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A47 A normal vector for the plane is~n =





















2
−3

5





















. Then, sinceP(1,−3,−1) is a point on the plane we get a

scalar equation of the plane is

2x1 − 3x2 + 5x3 = 2(1)− 3(−3)+ 5(−1)= 6

A48 A normal vector for the plane is~n =





















0
1
0





















. Then, sinceP(0,−2,−4) is a point on the plane we get a

scalar equation of the plane is
x2 = −2

A49 A normal vector for the plane is~n =





















1
−1

3





















. Then, sinceP(1,2,1) is a point on the plane we get a

scalar equation of the plane is

x1 − x2 + 3x3 = 1(1)− 1(2)+ 3(1)= 2

A50 The line of intersection must lie in both planes and hence it must be orthogonal to both normal
vectors. Hence, a direction vector of the line is

~d =





















1
3
−1





















×





















2
−5

1





















=





















−2
−3
−11





















To find a point on the line we setx3 = 0 in the equations of both planes to getx1 + 3x2 = 5 and
2x1 − 5x2 = 7. Solving the two equations in two unknowns gives the solutionx1 =

46
11 andx2 =

3
11.

Thus,an equation of the line is

~x =





















46/11
3/11

0





















+ t





















−2
−3
−11





















, t ∈ R

A51 A direction vector of the line is

~d =





















2
0
−3





















×





















0
1
2





















=





















3
−4

2





















To find a point on the line we setx3 = 0 to get 2x1 = 7 andx2 = 4. Thus, an equation of the line is

~x =





















7/2
4
0





















+ t





















3
−4

2





















, t ∈ R

A52 A direction vector of the line is

~d =





















1
−2

1





















×





















3
4
−1





















=





















−2
4

10
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To find a point on the line we setx3 = 0 in the equations of both planes to getx1 − 2x2 = 1 and
3x1 + 4x2 = 5. Solving the two equations in two unknowns gives the solutionx1 =

7
5 and x2 =

1
5.

Thus,an equation of the line is

~x =





















7/5
1/5
0





















+ t





















−2
4

10





















, t ∈ R

A53 A direction vector of the line is

~d =





















1
−2

1





















×





















3
4
−1





















=





















−2
4

10





















Clearly (0,0,0) is on both lines. Hence, an equation of the line is

~x = t





















−2
4

10





















, t ∈ R

A54 The area of the parallelogram is
∥

∥

∥

∥

∥

∥

∥

∥

∥





















1
2
1





















×





















2
3
−1





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−5
3
−1





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

35

A55 Thearea of the parallelogram is
∥

∥

∥

∥

∥

∥

∥

∥

∥





















1
0
1





















×





















1
1
4





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−1
−3

1





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

11

A56 As specified in the hint, we write the vectors as





















−3
1
0





















and





















4
3
0





















. Hence, the area of the parallelogram is

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−3
1
0





















×





















4
3
0





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥





















0
0

−13





















∥

∥

∥

∥

∥

∥

∥

∥

∥

= 13

A57 ~u ·(~v×~w) = 0 means that~u is orthogonal to~v×~w. Therefore,~u lies in the plane through the origin that
contains~v and~w. We can also see this by observing that~u · (~v × ~w) = 0 means that the parallelepiped
determined by~u ,~v , and~w has volume zero; this can happen only if the three vectors lie in a common
plane.

A58 We have

(~u − ~v) × (~u + ~v) = ~u × (~u + ~v) − ~v × (~u + ~v)

= ~u × ~u + ~u × ~v − ~v × ~u − ~v × ~v

= ~0+ ~u × ~v + ~u × ~v − ~0
= 2(~u × ~v)

as required.
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B Homework Problems

B1
√

17 B2
√

13 B3 0
B4 1 B5 1 B6

√
3/2

B7
√

26 B8
√

17 B9
√

41
B10

√
11 B11

√
24 B12

√
14

B13
√

57

B14 Not orthogonal B15 Not orthogonal B16 Orthogonal
B17 Not orthogonal B18 Not orthogonal B19 Orthogonal

B20 k = 0 B21 k = 0,−3

B22 k = 2/7 B23 k = 0,5

B24 x1 − x2 + 5x3 = 4 B25 3x1 + 3x2 − 4x3 = 17

B26 −2x2 − x3 = −5 B27 x1 + 3x2 + x3 = 11

B28 5x1 − 6x2 + 3x3 = 0

B29





















3
6
0





















B30





















5
5

10





















B31





















0
0
0





















B32





















1
−11
−16





















B33





















−1
11
16





















B34





















−4
20
−12





















B35 (a) ~u × ~u =





















0
0
0





















(b) ~u × ~v =





















0
−2
−1





















= −~v × ~u

(c) ~u × 2~w =





















−6
−8

2





















= 2(~u × ~w) (d) ~u × (~v + ~w) =





















−3
−6

0





















= ~u × ~v + ~u × ~w

(e) ~u · (~v × ~w) = −3 = ~w · (~u × ~v) (f) ~u · (~v × ~w) = −3 = −~v · (~u × ~w)

B36 −2x1 − 4x2 + 5x3 = −15 B37 x1 − 7x2 − 5x3 = −35

B38 x1 − x2 − x3 = 1 B39 x1 + 11x2 + 14x3 = 0

B40 x1 + x3 = 0 B41 5x1 + 2x2 − 3x3 = 0

B42 ~x =





















−2
0
0





















+ x2





















5
1
0





















+ x3





















2
0
1





















, x2, x3 ∈ R B43 ~x =





















0
1
0





















+ x1





















1
0
0





















+ x3





















0
−1

1





















, x1, x3 ∈ R

B44 ~x = x2





















−1
1
0





















+ x3





















−2
0
1





















, x2, x3 ∈ R B45 ~x =





















6
0
0





















+ x2





















−1
1
0





















+ x3





















1
0
1





















, x2, x3 ∈ R
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B46 ~x = x1





















1
0
3





















+ x2





















0
1
5





















, x1, x2 ∈ R B47 ~x =





















−2
0
0





















+ x2





















−1
1
0





















+ x3





















3/2
0
1





















, x2, x3 ∈ R

B48 x1 + 11x2 + 2x3 = 43 B49 8x1 − x2 + 2x3 = 25

B50 x1 + 2x2 + 2x3 = 6 B51 7x1 + x2 − 14x3 = −6

B52 −2x1 − 6x2 + x3 = −31 B53 −19x1 + 22x2 − 21x3 = −6

B54 4x1 + x2 + 2x3 = 6 B55 −x1 + 2x2 − 3x3 = −23

B56 2x1 + 3x3 = 12 B57 −x1 − 5x2 + 3x3 = −6

B58 2x1 + 3x2 − 4x3 = 0 B59 4x1 + 2x2 + 2x3 = 0

B60 ~x =





















11/7
−2/7

0





















+ t





















5
1
−7





















, t ∈ R B61 ~x =





















1/2
3/4
0





















+ t





















2
−3
−4





















, t ∈ R

B62 ~x =





















9/7
1/7
0





















+ t





















1
4
7





















, t ∈ R B63 ~x =





















7/4
1/2
0





















+ t





















5
2

−16





















, t ∈ R

B64 ~x =





















4/3
−10/3

0





















+ t





















−5
11
−3





















, t ∈ R

B65
√

75 B66
√

65 B67
√

120
B68 19 B69 2 B70 6

C Conceptual Problems

C1 (a) First, we know that~d , ~0 as otherwise the vector equation would not be a line. Intuitively, if
there is no point of intersection, the line is parallel to the plane. Hence, the direction vector of the
line must be orthogonal to the normal to the plane. Therefore, we will have that~d · ~n = 0. Since
the pointP cannot be on the plane, it cannot satisfy the equation of the plane, so~p · ~n , k.

(b) Substitute~x = ~p + t~d into the equation of the plane to see whether for somet, ~x satisfies the
equation of the plane.

~n · (~p + t~d) = k

Isolate the term int: t(~n · ~d) = k − ~n · ~p .

There is one solution fort (and thus, one point of intersection of the line and the plane) exactly
when~n · ~d , 0. If ~n · ~d = 0, there is no solution fort unless we also have~n · ~p = k. In this case the
equation is satisfied for allt and the line lies in the plane. Thus, to have no point of intersection,
it is necessary and sufficient that~n · ~d = 0 and~n · ~p , k.

C2 (a) We have~x · ~x = x2
1 + x2

2 + x2
3 ≥ 0.

(b) If ~x · ~x = 0, thenx2
1 + x2

2 + x2
3 = 0 which impliesx1 = x2 = x3 = 0 as required. On the other hand

~0 · ~0 = 02 + 02 + 02 = 0.

(c) We have~x · ~y = x1y1 + x2y2 + x3y3 = y1x1 + y2x2 + y3x3 = ~y · ~x .
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(d) We have

~x · (s~y + t~z) = x1(sy1 + tz1) + x2(sy2 + tz2) + x3(sy3 + tz3)

= s[x1y1 + x2y2 + x3y3] + t[x1z1 + x2z2 + x3z3]

= s(~x · ~y ) + t(~x ·~z)

C3 (a)

[

x1

x2

]

·
[

0
0

]

= x1(0)+ x2(0) = 0

(b) ~x · ~0 = ~x · 0(~y ) = 0(~x · ~y ) = 0

C4 Let ~x be any point that is equidistant fromP andQ. Then~x satisfies‖~x−~p ‖ = ‖~x−~q ‖, or equivalently,
‖~x − ~p ‖2 = ‖~x − ~q ‖2. Hence,

(~x − ~p ) · (~x − ~p ) = (~x − ~q ) · (~x − ~q )

~x · ~x − ~x · ~p − ~p · ~x + ~p · ~p = ~x · ~x − ~x · ~q − ~q · ~x + ~q · ~q
−2~p · ~x + 2~q · ~x = ~q · ~q − ~p · ~p

2(~q − ~p ) · ~x = ‖~q ‖2 − ‖~p ‖2

This is the equation of a plane with normal vector 2(~q − ~p ).

C5 (a) A point~x on the plane must satisfy

∥

∥

∥

∥

∥

∥

∥

∥

∥

~x −





















2
2
5





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

~x −





















−3
4
1





















∥

∥

∥

∥

∥

∥

∥

∥

∥

. Square both sides and simplify.





















~x −





















2
2
5









































·





















~x −





















2
2
5









































=





















~x −





















−3
4
1









































·





















~x −





















−3
4
1









































~x · ~x − 2





















2
2
5





















· ~x + 33= ~x · ~x − 2





















−3
4
1





















· ~x + 26

2









































−3
4
1





















−





















2
2
5









































· ~x = 26− 33

5x1 − 2x2 + 4x3 = 7/2

(b) A point equidistant from the points is12









































2
2
5





















+





















−3
4
1









































=





















−1/2
3
3





















. Thevector joining the two points,

~n =





















2
2
5





















−





















−3
4
1





















=





















5
−2

4





















must be orthogonal to the plane. Thus, the equation of the plane is

~n · (~x − ~p ) =





















5
−2

4





















·





















x1 +
1
2

x2 − 3
x3 − 3





















whichgives
5x1 − 2x2 + 4x3 = 7/2
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C6 (a) The statement is false. If~x = ~0,~y = ~e1 and~z = ~e2, then~x · ~y = 0 = ~x ·~z but~y , ~z.

(b) No, it does not. If~x =





















1
1
0





















, ~y =





















−1
1
2





















, and~z =





















1
−1

3





















, then~x · ~y = 0 = ~x ·~z but~y , ~z.

C7 If X is a point on the line throughP andQ, then for somet ∈ R, ~x = ~p + t(~q − ~p ) Hence,

~x × (~q − ~p ) = (~p + t(~q − ~p )) × (~q − ~p )

= ~p × ~q − ~p × ~p + t(~q − ~p ) × (~q − ~p ) = ~p × ~q

C8 (a) Let~n =





















n1

n2

n3





















. We have~n · ~e1 = ‖~n‖ ‖~e1‖ cosα. But, ‖~n‖ = 1 and‖~e1‖ = 1, so~n · ~e1 = cosα. But,

~n · ~e1 = n1, son1 = cosα. Similarly, n2 = cosβ andn3 = cosγ, so~n =





















cosα
cosβ
cosγ





















.

(b) cos2α + cos2 β + cos2 γ = ‖~n‖2 = 1, because~n is a unit vector.

(c) In R2, the unit vector is~n =

[

cosα
cosβ

]

, whereα is the angle between~n and~e1 andβ is the angle

between~n and~e2. But in the planeα + β = π2, socosβ = cos(π/2− α) = sinα. Now let θ = α,
and we have

1 = ‖~n‖2 = cos2α + cos2 β = cos2 θ + sin2 θ

C9 The statement is false. For any non-zero vector~u and any vector~v ∈ R3, let ~w = ~v + t~u for anyt ∈ R,
t , 0. Then

~u × ~w = ~u × (~v + t~u) = ~u × ~v

but~v , ~w.

C10 If ~v × ~w = ~0, then~u × (~v × ~w) = ~0 which clearly satisfies the equation~x = s~v + t~w. Assume
~n = ~v × ~w , ~0. Then~n is orthogonal to both~v and ~w and hence it is a normal vector of the plane
through the origin containing~v and~w. Then,~u × (~v × ~w) = ~u × ~n is orthogonal to~n so it lies in the
plane through the origin with normal vector~n. That is, it is in the plane containing~v and~w. Hence,
there existss, t ∈ R such that~u × (~v × ~w) = s~v + t~w.

C11 (a) We have~e1 × (~e2 × ~e3) =





















0
0
0





















= (~e1 × ~e2) × ~e3.

(b) Take~w =





















1
2
0





















. Then~e1 × (~e2 × ~w) =





















0
1
0





















while (~e1 × ~e2) × ~w =





















−2
1
0





















.

C12 Consider~0 = c1~x + c2~y . Taking the dot product of both sides with~x gives

~0 · ~x = (c1~x + c2~y ) · ~x
0 = c1(~x · ~x ) + c2(~x · ~y )

0 = c1‖~x ‖2 + 0
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But, ‖~x ‖ , 0 since~x , ~0. Thus,c1 = 0. Similarly, taking the dot product of both sides with respect
to~y givesc2 = 0. Thus,{~x , ~y } is linearly independent.

C13 Consider~x = c1~v1 + c2~v2. Taking the dot product of both sides with~v1 gives

~x · ~v1 = (c1~v1 + c2~v2) · ~v1

~x · ~v1 = c1‖~v1‖2 + 0

Since~v1 , ~0 (as otherwiseB would be linearly dependent), we get thatc1 =
~x ·~v 1

‖~v 1‖2 asrequired. The
proof for c2 is the same.

Section 1.4

A Practice Problems

A1































1
3
2
−1































+ 2































2
3
−1

1































=































1
3
2
−1































+































4
6
−2

2































=































5
9
0
1































A2































1
−2

5
1































− 3































−1
1
1
2































+ 2































3
−1

4
0































=































1
−2

5
1































−































−3
3
3
6































+































6
−2

8
0































=































10
−7
10
−5































A3









































3
−4
−1

2
1









































+









































5
2
2
4
3









































−









































2
−2
−3

1
1









































=









































6
0
4
5
3









































A4 2









































1
2
1
0
−1









































+ 2









































2
−2

1
2
1









































− 3









































2
0
1
1
1









































=









































2
4
2
0
−2









































+









































4
−4

2
4
2









































−









































6
0
3
3
3









































=









































0
0
1
1
−3









































A5 The set is a subspace ofR2 by Theorem 1.4.2.

A6 Since the condition of the set contains the square of a variable in it, we suspect that it is not a
subspace. To prove it is not a subspace we just need to find one example where the set is not closed

under linear combinations. Let~x =





















1
1
0





















and~y =





















2
1
3





















. Observe that~x and~y are in the set since

x2
1 − x2

2 = 12 − 12 = 0 = x3 andy2
1 − y2

2 = 22 − 12 = 3 = y3, but ~x + ~y =





















3
2
3





















is not in the set since

32 − 22 = 5 , 3.
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A7 Sincethe condition of the set only contains linear variables, we suspect that this is a subspace. To
prove it is a subspace we need to show that it satisfies the definition of a subspace.
Call the setS . First, observe thatS is a subset ofR3 and is non-empty since the zero vector satisfies

the conditions of the set. Pick any vectors~x =





















x1

x2

x3





















and~y =





















y1

y2

y3





















in S . Then they must satisfy the

condition ofS , so x1 = x3 andy1 = y3. We now need to show thats~x + t~y =





















sx1 + ty1

sx2 + ty2

sx3 + ty3





















satisfies

the conditions of the set. In particular, we need to show that the first entry ofs~x + t~y equals its third
entry. Sincex1 = x3 andy1 = y3 we getsx1+ ty1 = sx3+ ty3 as required. Thus,S is a subspace ofR3.

A8 Since the condition of the set only contains linear variables, we suspect that this is a subspace. Call
the setS . First, observe thatS is a subset ofR2 and is non-empty since the zero vector satisfies

the conditions of the set. Pick any vectors~x =

[

x1

x2

]

and~y =

[

y1

y2

]

in S . Then they must satisfy the

condition ofS , sox1 + x2 = 0 andy1 + y2 = 0. Thens~x + t~y =

[

sx1 + ty1

sx2 + ty2

]

satisfies the conditions of

the set since (sx1+ ty1)+ (sx2+ ty2) = s(x1+ x2)+ t(y1+ y2) = s(0)+ t(0) = 0. Thus,S is a subspace
of R2.

A9 The condition of the set involves multiplication of entries, so we suspect that it is not a subspace.

Observe that if~x =





















x1

x2

x3





















=





















1
1
1





















, then~x is in the set sincex1x2 = 1(1)= 1 = x3, but 2~x =





















2
2
2





















is not in

the set since 2(2)= 4 , 2. Therefore, the set is not a subspace.

A10 At first glance this might not seem like a subspace since we are adding the vector





















2
2
2





















. However, the

key observation to make is that





















2
2
2





















= 2





















1
1
1





















. Therefore, the set can be written asS = Span







































1
1
1







































and

hence is a subspace by Theorem 1.4.2.

A11 Since the condition of the set only contains linear variables, we suspect that this is a subspace. Call
the setS . By definition S is a subset ofR4 and is non-empty since the zero vector satisfies the

conditions of the set. Pick any vectors~x =































x1

x2

x3

x4































and~y =































y1

y2

y3

y4































in S , then x1 + x2 + x3 + x4 = 0

andy1 + y2 + y3 + y4 = 0. We haves~x + t~y =































sx1 + ty1

sx2 + ty2

sx3 + ty3

sx4 + ty4































satisfies the conditions of the set since

(sx1+ty1)+(sx2+ty2)+(sx3+ty3)+(sx4+ty4) = s(x1+x2+x3+x4)+t(y1+y2+y3+y4) = s(0)+t(0) = 0.
Thus,S is a subspace ofR4.

A12 The set clearly does not contain the zero vector and hence cannot be a subspace.
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A13 Theconditions of the set only contain linear variables, but we notice that the first equationx1+2x3 = 5
excludesx1 = x3 = 0. Hence the zero vector is not in the set so it is not a subspace.

A14 The conditions of the set involve a multiplication of variables, so we suspect that it is not a subspace.

We take~x =































1
1
1
1































. Then,~x is in the set sincex1 = 1 = 1(1) = x3x4 andx2 − x4 = 1 − 1 = 0. But,

2~x =































2
2
2
2































is not in the set since 2, 2(2).

A15 Since the conditions of the set only contains linear variables, we suspect that this is a subspace.
Call the setS . By definitionS is a subset ofR4 and is non-empty since the zero vector satisfies the

conditions of the set. Pick any vectors~x =































x1

x2

x3

x4































and~y =































y1

y2

y3

y4































in S , then 2x1 = 3x4, x2 − 5x3 = 0,

2y1 = 3y4, andy2 − 5y3 = 0. We haves~x + t~y =































sx1 + ty1

sx2 + ty2

sx3 + ty3

sx4 + ty4































satisfies the conditions of the set

since 2(sx1 + ty1) = 2sx1 + 2ty1 = 3sx4 + t3y4 = 3(sx4 + ty4) and (sx2 + ty2) − 5(sx3 − ty3) =
s(x2 − 5x3) + t(y2 − 5y3) = s(0)+ t(0) = 0. Thus,S is a subspace ofR4.

A16 Sincex3 = 2 the zero vector cannot be in the set, so it is not a subspace.

For ProblemsA17 - A20, alternative correct answers are possible.

A17 1































0
0
0
0































+ 0































1
0
1
2































+ 0































2
1
−1
−3































=































0
0
0
0































A18 0































2
−1

3
2































− 2































0
2
1
−1































+ 1































0
4
2
−2































=































0
0
0
0































A19 1































1
1
0
2































+ 1































1
1
1
1































− 1































2
2
1
3































=































0
0
0
0
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A20 It is difficult to determine a linear combination by inspection, so we set up a system of equations.
Consider































0
0
0
0































= c1































1
1
−2

3































+ c2































1
2
1
3































+ c3































1
−1
−8

3































=































c1 + c2 + c3

c1 + 2c2 − c3

−2c1 + c2 − 8c3

3c1 + 3c2 + 3c3































This gives us the system of equations

c1 + c2 + c3 = 0

c1 + 2c2 − c3 = 0

−2c1 + c2 − 8c3 = 0

3c1 + 3c2 + 3c3 = 0

Adding the first equation and the second equation gives 2c1 + 3c2 = 0. Subtracting the first equation
from the second equation givesc2 − 2c3 = 0. Thus, if we takec3 = 1, we getc2 = 2 and hence
c1 = −3. Indeed, we find that

(−3)































1
1
−2

3































+ 2































1
2
1
3































+































1
−1
−8

3































=































0
0
0
0































A21 Observe that 0































1
1
0
3































+ 2































1
2
−1

1































+































−2
−4

2
−2































=































0
0
0
0































, so the set is linearly dependent.

A22 Observe that−2































1
1
2
1































+































2
2
4
2































+ 0































1
0
1
0































=































0
0
0
0































, so the set is linearly dependent.

A23 Consider































0
0
0
0































= c1































1
1
0
1































+ c2































0
1
1
1































=































c1

c1 + c2

c2

c1 + c2































. Comparing entries givesc1 = c2 = 0, so the set is linearly

independent.
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A24 Consider































0
0
0
0































= c1































3
2
1
2































+ c2































4
4
−5

0































+ c3































3
3
−2

1































=































3c1 + 4c2 + 3c3

2c1 + 4c2 + 3c3

c1 − 5c2 − 2c3

2c1 + c3































. This gives

3c1 + 4c2 + 3c3 = 0

2c1 + 4c2 + 3c3 = 0

c1 − 5c2 − 2c3 = 0

2c1 + c3 = 0

Subtracting the second equation from the first givesc1 = 0. Then, the third equation givesc3 = 0 and
any of the other equations givesc2 = 0. Thus, the set is linearly independent.

A25 By the definition ofP, every~x =





















x1

x2

x3





















∈ P satisfies 2x1 + x2 + x3 = 0. Solving this forx2 gives

x2 = −2x1 − x3. Consider




















x1

−2x1 − x3

x3





















= c1





















1
0
−2





















+ c2





















0
1
−1





















=





















c1

c2

−2c1 − c2





















Solving we find thatc1 = x1, c2 = −2x1 − x3. Observe that−2c1 − c2 = −2x1 − (−2x1 − x3) = x3 so
the third equation is also satisfied. Thus,B spansP. Now consider





















0
0
0





















= c1





















1
0
−2





















+ c2





















0
1
−1





















=





















c1

c2

−2c1 − c2





















Comparing entries we get thatc1 = c2 = 0. Hence,B is also linearly independent.

SinceB is linearly independent and spansP, it is a basis forP.

NOTE: We could have solved the equation for the planeP for x3 instead.

A26 By the definition ofP, every~x =





















x1

x2

x3





















∈ P satisfies 3x1 + x2 − 2x3 = 0. Solving this forx2 gives

x2 = −3x1 + 2x3. Consider




















x1

−3x1 + 2x3

x3





















= c1





















1
−3

0





















+ c2





















0
2
1





















=





















c1

−3c1 + 2c2

c2





















Solving we find thatc1 = x1, c2 = x3 (observe that−3c1 + 2c2 = −3x1 + 2x3 so the second equation
is also satisfied). Thus,B spansP. Now consider





















0
0
0





















= c1





















1
−3

0





















+ c2





















0
2
1





















=





















c1

−3c1 + 2c2

c2





















Comparing entries we get thatc1 = c2 = 0. Hence,B is also linearly independent.

SinceB is linearly independent and spansP, it is a basis forP.
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A27 By the definition ofP, every~x =





















x1

x2

x3





















∈ P satisfies 3x1 + x2 − 2x3 = 0. Solving this forx2 gives

x2 = −3x1 + 2x3. Consider





















x1

−3x1 + 2x3

x3





















= c1





















1
0

3/2





















+ c2





















0
1

1/2





















=





















c1

c2
3
2c1 +

1
2c2





















Solving we find thatc1 = x1, c2 = −3x1 + 2x3 (observe that32c1 +
1
2c2 =

3
2 x1 +

1
2(−3x1 + 2x3) = x3

sothe third equation is also satisfied). Thus,B spansP. Now consider





















0
0
0





















= c1





















1
0

3/2





















+ c2





















0
1

1/2





















=





















c1

c2
3
2c1 +

1
2c2





















Comparingentries we get thatc1 = c2 = 0. Hence,B is also linearly independent.

SinceB is linearly independent and spansP, it is a basis forP.

A28 By the definition ofP, every~x =































x1

x2

x3

x4































∈ P satisfiesx1 + x2 + x3 − x4 = 0. Solving this forx4 gives

x4 = x1 + x2 + x3. Consider































x1

x2

x3

x1 + x2 + x3































= c1































1
0
0
1































+ c2































0
1
0
1































+ c3































0
0
1
1































=































c1

c2

c3

c1 + c2 + c3































Solving we find thatc1 = x1, c2 = x2, c3 = x3 (observe thatc1 + c2 + c3 = x1 + x2 + x3 = x4 so the
fourth equation is also satisfied). Thus,B spansP. Now consider































0
0
0
0































= c1































1
0
0
1































+ c2































0
1
0
1































+ c3































0
0
1
1































=































c1

c2

c3

c1 + c2 + c3































Comparing entries we get thatc1 = c2 = c3 = 0. Hence,B is also linearly independent.

SinceB is linearly independent and spansP, it is a basis forP.

For ProblemsA29 - A32, alternative correct answers are possible.

A29 We observe that neither vector is a scalar multiple of the other. Hence, this is a linearly independent

set of two vectors inR4. Hence, it is a plane inR4 with basis





























































1
0
1
1































,































1
2
1
3





























































.
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A30 Theset





























































1
0
0
0































,































0
1
0
0































,































0
0
0
1





























































is a subset of the standard basis forR4 and hence is a linearly independent set

of three vectors inR4. Hence, the span of this set is a hyperplane inR4 with basis





























































1
0
0
0































,































0
1
0
0































,































0
0
0
1





























































.

A31 Observe that the second and third vectors are just scalar multiples of the first vector. Hence, by
Theorem 1.4.3, we can write

Span





























































3
1
−1

0































,































0
0
0
0































,































6
2
−2

0





























































= Span





























































3
1
−1

0





























































Therefore, it is a line inR4 with basis





























































3
1
−1

0





























































.

A32 Observe that the third vector is the sum of the first two vectors. Hence, by Theorem 1.4.3 we can
write

Span





























































1
1
0
2































,































1
0
0
−1































,































2
1
0
1





























































= Span





























































1
1
0
2































,































1
0
0
−1





























































Since





























































1
1
0
2































,































1
0
0
−1





























































is linearly independent, we get that it spans a plane inR4 with basis





























































1
1
0
2































,































1
0
0
−1





























































.

A33 If ~x = ~p + t~d is a subspace ofRn, then it contains the zero vector. Hence, there existst1 such that
~0 = ~p + t1~d. Thus,~p = −t1~d and so~p is a scalar multiple of~d. On the other hand, if~p is a scalar
multiple of ~d, say~p = t1~d, then we have~x = ~p + t~d = t1~d + t~d = (t1 + t)~d. Hence, the set is Span{~d}
and thus is a subspace.

A34 Assume there is a non-empty subsetB1 = {~v1, . . . ,~v ℓ} of B that is linearly dependent. Then there
existsci not all zero such that

~0 = c1~v1 + · · · + cℓ~v ℓ = c1~v1 + · · · + cℓ~v ℓ + 0~v ℓ+1 + · · · + 0~vn

which contradicts the fact thatB is linearly independent. Hence,B1 must be linearly independent.

A35 (a) Assume that Span{~v1, . . . ,~v k} = Span{~v1, . . . ,~v k−1}.
Since~v k ∈ Span{~v1, . . . ,~v k} our assumption implies that~v k ∈ Span{~v1, . . . ,~v k−1}. Consequently,
there existsb1, . . . , bk−1 ∈ R such that

~v k = b1~v1 + · · · + bk−1~v k−1

Therefore,~v k is a linear combination of~v1, . . . ,~v k−1 as required.
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(b) If ~v k can be written as a linear combination of~v1, . . . ,~v k−1, then, by definition of linear combi-
nation, there existc1, . . . , ck−1 ∈ R such that

c1~v1 + · · · + ck−1~v k−1 = ~v k (1)

To prove that Span{~v1, . . . ,~v k} = Span{~v1, . . . ,~v k−1} we will show that the sets are subsets of
each other.

By definition of span, for any~x ∈ Span{~v1, . . . ,~v k} there existd1, . . . , dk ∈ R such that

~x = d1~v1 + · · · + dk−1~v k−1 + dk~v k

Using equation (1) to substitute in for~v k gives

~x = d1~v1 + · · · + dk−1~v k−1 + dk(c1~v1 + · · · + ck−1~v k−1)

Rearranging using properties from Theorem 1.1.1 gives

~x = (d1 + dkc1)~v1 + · · · + (dk−1 + dkck−1)~v k−1

Thus, by definition,~x ∈ Span{~v1, . . . ,~v k−1} and hence

Span{~v1, . . . ,~v k} ⊆ Span{~v1, . . . ,~v k−1}

Now, if ~y ∈ Span{~v1, . . . ,~v k−1}, then there existsa1, . . . , ak−1 ∈ R such that

~y = a1~v1 + · · · + ak−1~v k−1

= a1~v1 + · · · + ak−1~v k−1 + 0~v k

Thus,~y ∈ Span{~v1, . . . ,~v k}. Hence, we also have Span{~v1, . . . ,~v k−1} ⊆ Span{~v1, . . . ,~v k} and so

Span{~v1, . . . ,~v k} = Span{~v1, . . . ,~v k−1}

A36 The linear combination represent how much material is required to produce 100 thingamajiggers and
250 whatchamacallits.

B Homework Problems

B1































9
4

16
23































B2









































7
6
5
−3
−1









































B3









































4
−5
−5

3
0









































B4









































−5
2

12
5

20









































B5 It is a subspace ofR2. B6 It is not a subspace ofR2. B7 It is not a subspace ofR2.
B8 It is a subspace ofR3. B9 It is not a subspace ofR3. B10 It is a subspace ofR3.

B11 It is not a subspace ofR3. B12 It is a subspace ofR3. B13 It is not a subspace ofR3.
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B14 It is a subspace ofR3.
B15 It is a subspace ofR4. B16 It is a subspace ofR4.

B17 It is not a subspace ofR4. B18 It is a subspace ofR4.

B19































1
2
5
1































+































2
−1

1
1































−































3
1
6
2































+ 0































1
1
1
1































=































0
0
0
0































B20 3































4
1
−2

1































− 3































3
1
1
2































−































3
0
−9
−3































=































0
0
0
0































B21 0































1
−1

1
−1































+































2
2
1
1































+ 0































1
1
1
1































+































−2
−2
−1
−1































=































0
0
0
0































B22 0































1
1
2
5































+ 0































3
1
5
2































+ 1































0
0
0
0































=































0
0
0
0































B23 Linearly independent B24 Linearly independent

B25































2
1
1
3































+































1
−1

0
4































=































3
0
1
7































B26 1
2































−2
5
1
4































+ 1
2































2
3
1
2































=































0
4
1
3































B27 Show B spansP and is linearly independent.
B28 ShowB spansP and is linearly independent.
B29 ShowB spansP and is linearly independent.

B30 A plane. A basis is





























































1
3
1
2































,































4
1
3
−2





























































. B31 A plane. A basis is





























































1
2
−2

1































,































3
2
4
−1





























































.

B32 A hyperplane. A basis is





























































1
2
2
0































,































−1
−2

2
0































,































3
1
0
1





























































B33 A line. A basis is





























































−1
−2

1
−3





























































.

B34 A hyperplane. A basis is





























































1
0
1
1































,































1
0
2
1































,































3
1
0
0





























































. B35 A line. A basis is





























































1
2
1
1





























































.

C Conceptual Problems

C1 Let ~x =

























x1
...

xn

























and lets, t ∈ R. Then

(s + t)

























x1
...

xn

























=

























(s + t)x1
...

(s + t)xn

























=

























sx1 + tx1
...

sxn + txn

























=

























sx1
...

sxn

























+

























tx1
...

txn

























= s

























x1
...

xn

























+ t

























x1
...

xn
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C2 Let ~x =

























x1
...

xn

























, ~y =

























y1
...

yn

























, and lett ∈ R.

t(~x + ~y ) = t

























x1 + y1
...

xn + yn

























=

























t(x1 + y1)
...

t(xn + yn)

























=

























tx1 + ty1
...

txn + tyn

























=

























tx1
...

txn

























+

























ty1
...

tyn

























= t

























x1
...

xn

























+ t

























y1
...

yn

























= t~x + t~y

C3 By the definition of spanning, every~x ∈ SpanB can be written as a linear combination of the vectors
in B. Now, assume that we have~x = s1~v1 + · · · + sk~v k and~x = t1~v1 + · · · + tk~v k. Then, we have

s1~v1 + · · · + sk~v k = t1~v1 + · · · + tk~v k

(s1~v1 + · · · + sk~v k) − (t1~v1 + · · · + tk~v k) = ~0

(s1 − t1)~v1 + · · · + (sk − tk)~v k = ~0

Since{~v1, . . . ,~v k} is linearly independent, this implies thatsi − ti = 0 for 1 ≤ i ≤ k. That is,si = ti.
Therefore, there is a unique linear combination of the vectors inB which equals~x .

C4 If ~v i = ~0, then we have that

0~v1 + · · · + 0~v i−1 + 1~v i + 0~v i+1 + · · · + 0~v k = ~0

Hence, by definition,{~v1, . . . ,~v k} is linearly dependent.

C5 (a) By definitionU ∩ V is a subset ofRn, and~0 ∈ U and~0 ∈ V since they are both subspaces. Thus,
~0 ∈ U ∩ V. Let ~x , ~y ∈ U ∩ V. Then~x , ~y ∈ U and~x , ~y ∈ V. SinceU is a subspace, we have that
s~x + t~y ∈ U for all s, t ∈ R. Similarly, V is a subspace, sos~x + t~y ∈ V for all s, t ∈ R. Hence,
s~x + t~y ∈ U ∩ V. Thus,U ∩ V is a subspace ofRn.

(b) Consider the subspacesU =

{[

x1

0

]

| x1 ∈ R
}

andV =

{[

0
x2

]

| x2 ∈ R
}

of R2. Then~x =

[

1
0

]

∈ U

and~y =

[

0
1

]

∈ V, but~x + ~y =

[

1
1

]

is not inU and not inV, so it is not inU ∪ V. Thus,U ∪ V is

not a subspace.

(c) SinceU andV are subspaces ofRn, ~u ,~v ∈ Rn for any~u ∈ U and~v ∈ V, so~u + ~v ∈ Rn sinceRn

is closed under addition. Hence,U + V is a subset ofRn. Also, sinceU andV are subspace of
R

n, we have~0 ∈ U and~0 ∈ V, thus~0 = ~0 + ~0 ∈ U + V. Pick any vectors~x , ~y ∈ U + V. Then,
there exists vectors~u1, ~u2 ∈ U and~v1,~v2 ∈ V such that~x = ~u1 + ~v1 and~y = ~u2 + ~v2. We have
s~x + t~y = s(~u1+~v1)+ t(~u2+~v2) = (s~u1+ t~u2)+ (s~v1+ t~v2) with s~u1+ t~u2 ∈ U ands~v1+ t~v2 ∈ V
sinceU andV are both subspaces. Hence,s~x + t~y ∈ U + V for all s, t ∈ R. Therefore,U + V is a
subspace ofRn.
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C6 Thereare many possible solutions.

(a) Pick~p =































1
0
0
0































, ~v1 =































0
1
0
0































, ~v2 =































0
0
1
0































, and~v3 =































0
0
0
1































.

(b) Pick~p =































0
0
0
0































, ~v1 =































1
0
0
0































, ~v2 =































0
1
0
0































, and~v3 =































1
1
0
0































.

(c) Pick~p =































1
3
1
1































, ~v1 =































0
0
0
0































, ~v2 =































0
0
0
0































, and~v3 =































0
0
0
0































.

(d) Pick~p =































0
0
0
0































, ~v1 =































1
0
0
0































, ~v2 =































2
0
0
0































, and~v3 =































3
0
0
0































.

C7 If ~x ∈ Span{~v1, s~v1 + t~v2}, then

~x = c1~v1 + c2(s~v1 + t~v2) = (c1 + sc2)~v1 + c2t~v2 ∈ Span{~v1,~v2}

Hence, Span{~v1, s~v1 + t~v2} ⊆ Span{~v1,~v2}.
Sincet , 0 we get that~v2 =

−s
t ~v1 +

1
t (s~v1 + t~v2). Hence,if ~v ∈ Span{~v1,~v2}, then

~v = b1~v1 + b2~v2 = b1~v1 + b2

(

−s
t
~v1 +

1
t
(s~v1 + t~v2)

)

=

(

b1 −
b2s

t

)

~v1 +
b2

t
(s~v1 + t~v2) ∈ Span{~v1, s~v1 + t~v2}

Thus,Span{~v1,~v2} ⊆ Span{~v1, s~v1 + t~v2}. Hence Span{~v1,~v2} = Span{~v1, s~v1 + t~v2}.
C8 A subspaceS of Rn is a subset ofRn that has the additional properties thatS is non-empty and that

s~x + t~y ∈ S for all ~x , ~y ∈ S ands, t ∈ R. That is, every subspace ofRn must be a subset ofRn, but
not every subset ofRn is a subspace ofRn.

C9 TRUE. We can rearrange the equation to get−t~v1+~v2 = ~0 with at least one non-zero coefficient (the
coefficient of~v2). Hence{~v1,~v2} is linearly dependent by definition.

C10 FALSE. If ~v2 = ~0 and~v1 is any non-zero vector, then~v1 is not a scalar multiple of~v2 and{~v1,~v2} is
linearly dependent by ProblemC4.

C11 FALSE. If ~v1 =





















1
1
1





















, ~v2 =





















1
0
0





















, and~v3 =





















2
0
0





















. Then,{~v1,~v2,~v3} is linearly dependent, but~v1 cannot be

written as a linear combination of~v1 and~v2.

C12 TRUE. If ~v1 = s~v2 + t~v3, then we have~v1 − s~v2 − t~v3 = ~0 with at least one non-zero coefficient (the
coefficient of~v1). Hence, by definition, the set is linearly dependent.
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C13 FALSE. The set{~0} = Span{~0} is a subspace by Theorem 1.4.2.

C14 TRUE. By Theorem 1.4.2.

Section 1.5

A Practice Problems

A1































5
3
−6

1































·































3
2
4
0































= 5(3)+ 3(2)+ (−6)(4)+ 1(0)= −3

A2































1
−2
−2

4































·































2
1/2
1/2
−1































= 1(2)+ (−2)(1/2)+ (−2)(1/2)+ 4(−1)= −4

A3































1
4
−1

1































·































2
−1
−1

1































= 1(2)+ 4(−1)+ (−1)(−1)+ 1(1)= 0

A4

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

































√
2

1
−
√

2
−1

































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

√

(
√

2)2 + 12 + (−
√

2)2 + (−1)2 =
√

6

A5

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥































1/2
1/2
1/2
1/2































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

(1/2)2 + (1/2)2 + (1/2)2 + (1/2)2 = 1

A6

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥































1
2
−1

3































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

12 + 22 + (−1)2 + 32 =
√

15

A7 We have‖~x ‖ =
√

12 + 22 + 52 =
√

30. Thus, a unit vector in the direction of~x is

~̂x =
1
‖~x ‖
~x =

1
√

30





















1
2
5





















A8 We have‖~x ‖ =
√

32 + (−2)2 + (−1)2 + 12 =
√

15. Thus, a unit vector in the direction of~x is

~̂x =
1
‖~x ‖
~x =

1
√

15































3
−2
−1

1
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A9 We have‖~x ‖ =
√

(−2)2 + 12 + 02 + 12 =
√

6. Thus, a unit vector in the direction of~x is

~̂x =
1
‖~x ‖
~x =

1
√

6































−2
1
0
1































A10 We have‖~x ‖ =
√

12 + 22 + 52 + (−3)2 =
√

39. Thus, a unit vector in the direction of~x is

~̂x =
1
‖~x ‖
~x =

1
√

39































1
2
5
−3































A11 We have‖~x ‖ =
√

(1/2)2 + (1/2)2 + (1/2)2 + (1/2)2 = 1. Thus, a unit vector in the direction of~x is

~̂x =
1
‖~x ‖
~x =































1/2
1/2
1/2
1/2































A12 We have‖~x ‖ =
√

12 + 02 + 12 + 02 + 12 =
√

3. Thus, a unit vector in the direction of~x is

~̂x =
1
‖~x ‖
~x =

1
√

3









































1
0
1
0
1









































A13 We have‖~x ‖ =
√

42 + 32 + 12 =
√

26,‖~y ‖ =
√

22 + 12 + 52 =
√

30,‖~x+~y ‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥





















6
4
6





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

62 + 42 + 62 =

2
√

22, and|~x · ~y | = 4(2)+ 3(1)+ 1(5)= 16.The triangle inequality is satisfied since

2
√

22≈ 9.38≤
√

26+
√

30≈ 10.58

TheCauchy-Schwarz inequality is also satisfied since 16≤
√

26(30)≈ 27.93.

A14 We have‖~x ‖ =
√

12 + (−1)2 + 22 =
√

6, ‖~y ‖ =
√

(−3)2 + 22 + 42 =
√

29, ‖~x + ~y ‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−2
1
6





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

√

(−2)2 + 12 + 62 =
√

41, and|~x ·~y | = 1(−3)+ (−1)(2)+2(4)= 3. The triangle inequality is satisfied
since √

41≈ 6.40≤
√

6+
√

29≈ 7.83

TheCauchy-Schwarz inequality is satisfied since 3≤
√

6(29)≈ 13.19.

A15 A scalar equation of the hyperplane is 3x1 + x2 + 4x3 = 3(1)+ 1(1)+ 4(−1)= 0.
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A16 A scalar equation of the hyperplane isx2 + 3x3 + 3x4 = 0(2)+ 1(−2)+ 3(0)+ 3(1)= 1.

A17 A scalar equation of the hyperplane is 3x1 − 2x2 − 5x3 + x4 = 3(2)− 2(1)− 5(1)+ 1(5)= 4.

A18 A scalar equation of the hyperplane is 2x1 − 4x2 + x3 − 3x4 = 2(3)− 4(1)+ 1(0)− 3(7)= −19.

A19 A scalar equation of the hyperplane isx1 − 4x2 + 5x3 − 2x4 = 1(0)− 4(0)+ 5(0)− 2(0)= 0.

A20 A scalar equation of the hyperplane isx2 + 2x3 + x4 + x5 = 0(1)+ 1(0)+ 2(1)+ 1(2)+ 1(1)= 5.

A21 ~n =
[

2
1

]

A22 ~n =





















3
−2

3





















A23 ~n =





















−4
3
−5





















A24 ~n =































1
−1

2
−3































A25 ~n =









































1
1
−1

2
−1









































A26 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =
−5
1

[

0
1

]

=

[

0
−5

]

perp~v (~u) = ~u − proj~v (~u) =

[

3
−5

]

−
[

0
−5

]

=

[

3
0

]

A27 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =

12/5
1

[

3/5
4/5

]

=

[

36/25
48/25

]

perp~v (~u) = ~u − proj~v (~u) =

[

−4
6

]

−
[

36/25
48/25

]

=

[

−136/25
102/25

]

A28 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =

5
1





















0
1
0





















=





















0
5
0





















perp~v (~u) = ~u − proj~v (~u) =





















−3
5
2





















−





















0
5
0





















=





















−3
0
2





















A29 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =
−4/3

1





















1/3
−2/3

2/3





















=





















−4/9
8/9
−8/9





















perp~v (~u) = ~u − proj~v (~u) =





















4
1
−3





















−





















−4/9
8/9
−8/9





















=





















40/9
1/9

−19/9
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A30 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =

0
6































1
1
0
−2































=































0
0
0
0































perp~v (~u) = ~u − proj~v (~u) =































−1
−1

2
−1































−































0
0
0
0































=































−1
−1

2
−1































A31 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =
−1
2































1
0
0
1































=































−1/2
0
0
−1/2































perp~v (~u) = ~u − proj~v (~u) =































2
3
2
−3































−































−1/2
0
0
−1/2































=































5/2
3
2
−5/2































A32 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =

0
2

[

1
1

]

=

[

0
0

]

perp~v (~u) = ~u − proj~v (~u) =

[

3
−3

]

−
[

0
0

]

=

[

3
−3

]

A33 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =
−1
17





















2
3
−2





















=





















−2/17
−3/17

2/17





















perp~v (~u) = ~u − proj~v (~u) =





















4
−1

3





















−





















−2/17
−3/17

2/17





















=





















70/17
−14/17

49/17





















A34 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =
−14

6





















−2
1
−1





















=





















14/3
−7/3

7/3





















perp~v (~u) = ~u − proj~v (~u) =





















5
−1

3





















−





















14/3
−7/3

7/3





















=





















1/3
4/3
2/3
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A35 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =

9
6





















1
1
−2





















=





















3/2
3/2
−3





















perp~v (~u) = ~u − proj~v (~u) =





















4
1
−2





















−





















3/2
3/2
−3





















=





















5/2
−1/2

1





















A36 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =
−5
15































−1
2
1
−3































=































1/3
−2/3
−1/3

1































perp~v (~u) = ~u − proj~v (~u) =































2
−1

2
1































−































1/3
−2/3
−1/3

1































=































5/3
−1/3

7/3
0































A37 We have

proj~v (~u) =
~v · ~u
‖~v‖2
~v =
−1
6































2
0
1
1































=































−1/3
0
−1/6
−1/6































perp~v (~u) = ~u − proj~v (~u) =































−1
2
−1

2































−































−1/3
0
−1/6
−1/6































=































−2/3
2
−5/6
13/6































A38 (a) A unit vector in the direction of~u is

û =
1
‖~u‖
~u =





















2/7
6/7
3/7





















(b) We have

proj~u ( ~F) =
~F · ~u
‖~u‖2
~u =

110
49





















2
6
3





















=





















220/49
660/49
330/49





















(c) We get

perp~u ( ~F) = ~F − proj~u ( ~F) =





















10
18
−6





















−





















220/49
660/49
330/49





















=





















270/49
222/49
−624/49
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A39 (a) A unit vector in the direction of~u is

û =
~u
‖~u‖
=























3/
√

14
1/
√

14
−2/
√

14























(b) We have

proj~u ( ~F) =
~F · ~u
‖~u‖2
~u =

16
14





















3
1
−2





















=





















24/7
8/7

−16/7





















(c) We get

perp~u ( ~F) = ~F − proj~u ( ~F) =





















3
11
2





















−





















24/7
8/7

−16/7





















=





















−3/7
69/7
30/7





















A40 We first pick a pointP on the line, sayP(1,4). Then the pointR on the line that is closest toQ(0,0)

satisfies~PR = proj~d( ~PQ) where ~PQ =

[

−1
−4

]

and~d =

[

−2
2

]

is a direction vector of the line. We get

~PR = proj~d( ~PQ) =
~PQ · ~d
‖~d‖2

~d =
−6
8

[

−2
2

]

=

[

3/2
−3/2

]

Therefore,we have

~OR = ~OP + ~PR =

[

1
4

]

+

[

3/2
−3/2

]

=

[

5/2
5/2

]

Hence, the point on the line closest toQ is R(5/2,5/2). The distance fromR to Q is

‖ perp~d( ~PQ)‖ =
∥

∥

∥

∥

∥

∥

[

−1
−4

]

−
[

3/2
−3/2

]
∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

[

−5/2
−5/2

]
∥

∥

∥

∥

∥

∥

=
5
√

2

A41 We first pick the pointP(3,7) on the line. Then the pointR on the line that is closest toQ(2,5)

satisfies~PR = proj~d( ~PQ) where ~PQ =

[

−1
−2

]

and~d =

[

1
−4

]

is a direction vector of the line. We get

~PR = proj~d( ~PQ) =
~PQ · ~d
‖~d‖2

~d =
7
17

[

1
−4

]

=

[

7/17
−28/17

]

Therefore, we have

~OR = ~OP + ~PR =

[

3
7

]

+

[

7/17
−28/17

]

=

[

58/17
91/17

]

Hence, the point on the line closest toQ is R(58/17,91/17). The distance fromR to Q is

‖ perp~d( ~PQ)‖ =
∥

∥

∥

∥

∥

∥

[

−1
−2

]

−
[

7/17
−28/17

]
∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

[

−24/17
−6/17

]
∥

∥

∥

∥

∥

∥

=
6
√

17
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A42 We first pick the pointP(2,2,−1) on the line. Then the pointR on the line that is closest toQ(1,0,1)

satisfies~PR = proj~d( ~PQ) where ~PQ =





















−1
−2

2





















and~d =





















1
−2

1





















is a direction vector of the line. We get

~PR = proj~d( ~PQ) =
~PQ · ~d
‖~d‖2

~d =
5
6





















1
−2

1





















=





















5/6
−5/3

5/6





















Therefore,we have

~OR = ~OP + ~PR =





















2
2
−1





















+





















5/6
−5/3

5/6





















=





















17/6
1/3
−1/6





















Hence, the point on the line closest toQ is R(17/6,1/3,−1/6). The distance fromR to Q is

‖ perp~d( ~PQ)‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−1
−2

2





















−





















5/6
−5/3

5/6





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥





















−11/6
−1/3
7/6





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

√

29
6

A43 We first pick the pointP(1,1,−1) on the line. Then the pointR on the line that is closest toQ(2,3,2)

satisfies~PR = proj~d( ~PQ) where ~PQ =





















1
2
3





















and~d =





















1
4
1





















is a direction vector of the line. We get

~PR = proj~d( ~PQ) =
~PQ · ~d
‖~d‖2

~d =
12
18





















1
4
1





















=





















2/3
8/3
2/3





















Therefore,we have

~OR = ~OP + ~PR =





















1
1
−1





















+





















2/3
8/3
2/3





















=





















5/3
11/3
−1/3





















Hence, the point on the line closest toQ is R(5/3,11/3,−1/3). The distance fromR to Q is

‖ perp~d( ~PQ)‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥





















1
2
3





















−





















2/3
8/3
2/3





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥





















1/3
−2/3

7/3





















∥

∥

∥

∥

∥

∥

∥

∥

∥

=
√

6

A44 We first pick any pointP on the plane (that is, any pointP(x1, x2, x3) such that 3x1 − x2 + 4x3 = 5).

We pickP(0,−5,0). Then the distance fromQ to the plane is the length of the projection of~PQ =





















2
8
1





















onto a normal vector of the plane, say~n =





















3
−1

4





















. Thus, the distance is

‖ proj~n( ~PQ)‖ =
∣

∣

∣

∣

∣

∣

~PQ · ~n
‖~n‖

∣

∣

∣

∣

∣

∣

=
2
√

26
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A45 We pick the pointP(0,0,−1) on the plane and pick the normal vector for the plane~n =





















2
−3
−5





















. Then

the distance fromQ to the plane is

‖ proj~n( ~PQ)‖ =
∣

∣

∣

∣

∣

∣

~PQ · ~n
‖~n‖

∣

∣

∣

∣

∣

∣

=
13
√

38

A46 We pick the pointP(0,0,−5) on the plane and pick the normal vector for the plane~n =





















2
0
−1





















. Then

the distance fromQ to the plane is

‖ proj~n( ~PQ)‖ =
∣

∣

∣

∣

∣

∣

~PQ · ~n
‖~n‖

∣

∣

∣

∣

∣

∣

=
4
√

5

A47 We pick the pointP(2,0,0) on the plane and pick the normal vector for the plane~n =





















2
−1
−1





















. Then the

distance fromQ to the plane is

‖ proj~n( ~PQ)‖ =
∣

∣

∣

∣

∣

∣

~PQ · ~n
‖~n‖

∣

∣

∣

∣

∣

∣

=
√

6

A48 We pick the pointP(2,2,1) on the plane and pick the normal vector for the plane~n =





















1
1
3





















. Then the

distance fromQ to the plane is

‖ proj~n( ~PQ)‖ =
∣

∣

∣

∣

∣

∣

~PQ · ~n
‖~n‖

∣

∣

∣

∣

∣

∣

=
3
√

11

A49 We pick the pointP(0,5,0) on the plane and pick the normal vector for the plane~n =





















2
1
−4





















. Then the

distance fromQ to the plane is

‖ proj~n( ~PQ)‖ =
∣

∣

∣

∣

∣

∣

~PQ · ~n
‖~n‖

∣

∣

∣

∣

∣

∣

=
13
√

21

A50 We pick the pointP(6,0,0) on the plane and pick the normal vector for the plane~n =





















1
−1
−1





















. Then the

distance fromQ to the plane is

‖ proj~n( ~PQ)‖ =
∣

∣

∣

∣

∣

∣

~PQ · ~n
‖~n‖

∣

∣

∣

∣

∣

∣

=
5
√

3

Copyright © 2020 Pearson Canada Inc.



49

A51 Pick a pointP on the hyperplane, sayP(0,0,0,0). Then the pointR on the hyperplane that is closest
to Q(1,0,0,1) satisfies~OR = ~OQ+proj~n( ~QP) where~n is a normal vector of the hyperplane. We have

~QP =































−1
0
0
−1































and~n =































2
−1

1
1































, so

~OR = ~OQ +
~QP · ~n
‖~n‖2

~n =































1
0
0
1































+
−3
7































2
−1

1
1































=































1
0
0
1































+































−6/7
3/7
−3/7
−3/7































=































1/7
3/7
−3/7

4/7































Hence,the point in the hyperplane closest toQ is R(1/7,3/7,−3/7,4/7).

A52 We pick the pointP(1,0,0,0) on the hyperplane and pick the normal vector~n =































1
−2

3
0































for the hyper-

plane. Then the pointR in the hyperplane closest toQ satisfies

~OR = ~OQ +
~QP · ~n
‖~n‖2

~n =































1
2
1
3































+
1
14































1
−2

3
0































=































1
2
1
3































+































1/14
−2/14

3/14
0































=































15/14
13/7
17/14

3































Hence, the point in the hyperplane closest toQ is R(15/14,13/7,17/14,3).

A53 We pick the pointP(0,0,0,0) on the hyperplane and pick the normal vector~n =































3
−1

4
1































for the hyper-

plane. Then the pointR in the hyperplane closest toQ satisfies

~OR = ~OQ +
~QP · ~n
‖~n‖2

~n =































2
4
3
4































+
−18
27































3
−1

4
1































=































2
4
3
4































+































−2
2/3
−8/3
−2/3































=































0
14/3

1/3
10/3































Hence, the point in the hyperplane closest toQ is R(0,14/3,1/3,10/3).

A54 We pick the pointP(4,0,0,0) on the hyperplane and pick the normal vector~n =































1
2
1
−1































for the hyper-

plane. Then the pointR in the hyperplane closest toQ satisfies

~OR = ~OQ +
~QP · ~n
‖~n‖2

~n =































−1
3
2
−2































+
−5
7































1
2
1
−1































=































−1
3
2
−2































+































−5/7
−10/7
−5/7

5/7































=































−12/7
11/7
9/7
−9/7































Hence, the point in the hyperplane closest toQ is R(−12/7,11/7,9/7,−9/7).
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A55 Thevolume of the parallelepiped is

∣

∣

∣

∣

∣

∣

∣

∣

∣





















1
0
1





















·









































0
1
1





















×





















0
0
1









































∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣





















1
0
1





















·





















1
0
0





















∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1

A56 The volume of the parallelepiped is

∣

∣

∣

∣

∣

∣

∣

∣

∣





















4
1
−1





















·









































−1
5
2





















×





















1
1
6









































∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣





















4
1
−1





















·





















28
8
−6





















∣

∣

∣

∣

∣

∣

∣

∣

∣

= 126

A57 The volume of the parallelepiped is

∣

∣

∣

∣

∣

∣

∣

∣

∣





















−2
1
2





















·









































3
1
2





















×





















0
2
5









































∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣





















−2
1
2





















·





















1
−15

6





















∣

∣

∣

∣

∣

∣

∣

∣

∣

= | − 5| = 5

A58 The volume of the parallelepiped is

∣

∣

∣

∣

∣

∣

∣

∣

∣





















1
5
−3





















·









































1
0
−1





















×





















3
0
4









































∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣





















1
5
−3





















·





















0
−7

0





















∣

∣

∣

∣

∣

∣

∣

∣

∣

= | − 35|= 35

A59 By Hooke’s Law, we have that

3.0= 1k

6.5= 2k

9.0= 3k

Let ~p =





















3.0
6.5
9.0





















and~d =





















1
2
3





















. We want to find the value ofk that makes the vectork~d closest to the point

P(3,6.5,9). We interpretk~d as the lineL with vector equation

~x = k





















1
2
3





















, k ∈ R

The vector onL that is closest toP is the projection ofP onto L. Moreover, we know that the
coefficientk of the projection is

k =
~p · ~d
‖~d ‖2

=
43
14
≈ 3.07

Thus,based on the data, the best approximation ofk would bek ≈ 3.07.
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B Homework Problems

B1 −2 B2 23 B3 −3 B4
√

18

B5
√

27 B6
√

10/3 B7 −12 B8































−20
−40

0
20































B9
1
√

6





















1
1
−2





















B10
1
√

26































5
0
0
1































B11
1
√

14































3
2
−1

0































B12
1
√

18































−2
1
−2

3































B13
1
√

7/18































1/3
1/2
1/6

0































B14
1
√

5









































1
1
1
1
1









































B15 We have‖~x ‖ =
√

21,‖~y ‖ =
√

35, |~x · ~y | = 25,and‖~x + ~y ‖ =
√

106. Indeed we have 25≤
√

21
√

35
and
√

106≤
√

21+
√

35.

B16 We have‖~x ‖ =
√

14,‖~y ‖ =
√

12, |~x · ~y | = 4, and‖~x + ~y ‖ =
√

34. Indeed we have 4≤
√

14
√

12 and√
34≤

√
14+

√
12.

B17 2x1 + 2x2 + 6x3 − x4 = 19 B18 x1 + 5x2 + 9x3 + 2x4 = 46

B19 2x1 + x2 + 2x3 + x4 = 10 B20 x2 + 2x3 + x4 = 3

B21
[

3
1

]

B22





















1
2
7





















B23































3
−5

1
−1































B24































1
0
−3

9































B25









































2
0
1
0
3









































B26









































−2
−1
−2

2
−2









































B27 proj~v (~u) =

[

3/2
3/2

]

, perp~v (~u) =

[

−1/2
1/2

]

B28 proj~v (~u) =

[

4
−6

]

, perp~v (~u) =

[

0
0

]

B29 proj~v (~u) =

[

16/25
12/25

]

, perp~v (~u) =

[

9/25
−12/25

]

B30 proj~v (~u) =

[

−92/25
69/25

]

, perp~v (~u) =

[

42/25
56/25

]

B31 proj~v (~u) =





















9/2
0

9/2





















, perp~v (~u) =





















−5/2
−4
5/2





















B32 proj~v (~u) =





















−2/3
1/3
−2/3





















, perp~v (~u) =





















−4/3
8/3
8/3





















B33 proj~v (~u) =































1/3
0

1/3
1/3































, perp~v (~u) =































8/3
3

−13/3
5/3































B34 proj~v (~u) =































0
0
0
0































, perp~v (~u) =































−1
3
2
1































B35 proj~v (~u) =

[

−1
1

]

, perp~v (~u) =

[

4
4

]

B36 proj~v (~u) =

[

5
0

]

, perp~v (~u) =

[

0
3

]

B37 proj~v (~u) =

[

1
1

]

, perp~v (~u) =

[

2
−2

]

B38 proj~v (~u) =

[

7/5
21/5

]

, perp~v (~u) =

[

18/5
−6/5

]
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B39 proj~v (~u) =





















0
0
0





















, perp~v (~u) =





















4
1
−2





















B40 proj~v (~u) =





















1
1
−1





















, perp~v (~u) =





















3
0
3





















B41 proj~v (~u) =





















2
4
−2





















, perp~v (~u) =





















1
−1
−1





















B42 proj~v (~u) =































2/9
0

1/9
2/9































, perp~v (~u) =































−11/9
2

−10/9
16/9































B43 (a) 1
3





















2
1
2





















(b) proj~u ( ~F) =





















2/3
1/3
2/3





















(c) perp~u ( ~F) =





















−11/3
14/3
4/3





















B44 (a) 1√
19





















1
3
−3





















(b) proj~u ( ~F) =





















−2/19
−6/19

6/19





















(c) perp~u ( ~F) =





















78/19
63/19
89/19





















B45 (16/5,−28/5), 1 B46 (16/9,13/9,4/9),
√

50/3

B47 (5/3,−1/3,−1/3),
√

14/3 B48 (14/3,4/3,−2/3),
√

11/3

B49 26/
√

38 B50 7/
√

21 B51 4
√

3 B52 4/
√

6

B53 (32/17,1,−2/17,−20/17) B54 (10/9,26/9,1/18,7/6)

B55 (3/4,7/4,11/4,21/4) B56 (2,1/2,1,−3/2)

B57 2 B58 21 B59 40 B60 48

C Conceptual Problems

C1 (a) False. One possible counterexample is

[

1
0

]

·
[

2
2

]

= 2 =

[

1
0

]

·
[

2
−97

]

.

(b) Our counterexample in part (a) has~u , ~0 so the result does not change.

C2 Since~x = ~x − ~y + ~y ,

‖~x ‖ = ‖~x − ~y + ~y ‖ = ‖(~x − ~y ) + ~y ‖ ≤ ‖~x − ~y ‖ + ‖~y ‖

So,‖~x ‖− ‖~y ‖ ≤ ‖~x −~y ‖. This is almost what we require, but the left-hand side might be negative. So,
by a similar argument with~y , and using the fact that‖~y −~x ‖ = ‖~x −~y ‖, we obtain‖~y ‖−‖~x ‖ ≤ ‖~x −~y ‖.
From this equation and the previous one, we can conclude that

∣

∣

∣‖~x ‖ − ‖~y ‖
∣

∣

∣ ≤ ‖~x − ~y ‖

C3 We have

‖~v1 + ~v2‖2 = (~v1 + ~v2) · (~v1 + ~v2) = ~v1 · ~v1 + ~v1 · ~v2 + ~v2 · ~v1 + ~v2 · ~v2

= ‖~v1‖2 + 0+ 0+ ‖~v2‖2 = ‖~v1‖2 + ‖~v2‖2

C4 By Theorem 1.5.2 (2) we have that
∥

∥

∥

∥

1
‖~x ‖~x

∥

∥

∥

∥

=

∣

∣

∣

∣

1
‖~x ‖

∣

∣

∣

∣

‖~x ‖ = 1.
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C5 Consider~0 = c1~v1 + · · · + ck~v k. Taking the dot product of both sides with respect to~v i gives

0 = ~0 · ~v i = (c1~v1 + · · · + ck~v k) · ~v i = ci(~v i · ~v i)

Since~v i , ~0, we have that~v i ·~v i , 0 by Theorem 1.5.2 (1). Hence, we haveci = 0. Since this applies
for all 1 ≤ i ≤ k, we have that{~v1, . . . ,~v k} is linearly independent.

C6 By definition,S ⊥ is a subset ofRn. Moreover, since~0 · ~v = 0 for all~v ∈ S we have that~0 ∈ S ⊥. Let
~w1, ~w2 ∈ S ⊥. Then,~w1 · ~v = 0 and~w2 · ~v = 0 for all~v ∈ S . Hence, we have that

(s~w1 + t~w2) · ~v = s(~w1 · ~v) + t(~w2 · ~v) = s(0)+ t(0) = 0

for all ~v ∈ S ands, t ∈ R. Hence,S ⊥ is a subspace ofRn.

C7 (a) We have

C(s~x + t~y ) = proj~u (proj~v (s~x + t~y )) = proj~u (s proj~v (~x ) + t proj~v (~y ))

= s proj~u (proj~v (~x )) + t proj~u (proj~v (~y )) = sC(~x ) + tC(~y )

(b) If C(~x ) = ~0 for all ~x , then certainly

~0 = C(~v) = proj~u (proj~v (~v)) = proj~u (~v) =
~v · ~u
‖~u‖2
~u

Hence,~v · ~u = 0, and the vectors~u and~v are orthogonal to each other.

C8

proj−~u (~x ) =
~x · (−~u)
‖ − ~u‖2

(−~u) =
−(~x · ~u)
‖~u‖2

(−~u) =
~x · ~u
‖~u‖2
~u = proj~u (~x )

Geometrically, proj−~u (~x ) is a vector along the line through the origin with direction vector−~u , and
this line is the same as the line with direction vector~u . We have that proj−~u (~x ) is the point on this
line that is closest to~x and this is the same as proj~u (~x ).

C9 (a)

‖~x + ~y ‖2 = (~x + ~y ) · (~x + ~y ) = ~x · ~x + ~x · ~y + ~y · ~x + ~y · ~y
= ‖~x ‖2 + 2~x · ~y + ‖~y ‖2

Hence,‖~x + ~y ‖2 = ‖~x ‖2 + ‖~y ‖2 if and only if ~x · ~y = 0.

(b) Following the hint, we subtract and add proj~d(~p ):

‖~p − ~q ‖2 = ‖~p − proj~d(~p ) + proj~d(~p ) − ~q ‖2

=

∥

∥

∥

∥

∥

∥

∥

perp~d(~p ) +















~p · ~d
‖~d‖2

− t















~d

∥

∥

∥

∥

∥

∥

∥

2

Since, ~d · perp~d(~p ) = 0, we can apply the result of (a) to get

‖~p − ~q ‖2 = ‖ perp~d(~p )‖2 + ‖ proj~d(~p ) − ~q ‖2

Since~p and~d are given, perp~d(~p ) is fixed, so to make this expression as small as possible choose
~q = proj~d(~p ). Thus, the distance from the point~p to a point on the line is minimized by the point
~q = proj~d(~p ) on the line.
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C10

~OP + perp~n( ~PQ) = ~OP +
(

~PQ − proj~n
(

~PQ
))

=
(

~OP + ~PQ
)

+ proj~n
(

− ~PQ
)

= ~OQ + proj~n
(

~QP
)

C11 (a)

perp~u (~x ) = ~x − ~x · ~u
‖~u‖2
~u =





















2/3
11/3
13/3





















proj~u (perp~u (~x )) =
perp~u (~x ) · ~u
‖~u‖2

~u =





















0
0
0





















(b)

proj~u (perp~u (~x )) =

[(

~x − ~x · ~u
‖~u ||2
~u

)

· ~u
‖~u‖2

]

~u

=

[

~x · ~u
‖~u‖2

− (~x · ~u)(~u · ~u)
‖~u‖4

]

~u

=

[

~x · ~u
‖~u‖2

− ~x · ~u
‖~u‖2

]

~u

= ~0

(c) proj~u (perp~u (~x )) = ~0 since perp~u (~x ) is orthogonal to~u and proj~u maps vectors orthogonal to~u to
the zero vector.

C12 (a) We have

‖~e1‖ =
√

12 + 02 + 02 = 1

‖~e2‖ =
√

02 + 12 + 02 = 1

‖~e3‖ =
√

02 + 02 + 12 = 1

Thus,each standard basis vector is a unit vector. We also have

~e1 · ~e2 = 1(0)+ 0(1)+ 0(0)= 0

~e1 · ~e3 = 1(0)+ 0(0)+ 0(1)= 0

~e2 · ~e3 = 0(0)+ 1(0)+ 0(1)= 0

Hence, each vector is orthogonal to every other vector in the set. So, the set{~e1, ~e2, ~e3} is or-
thonormal.

(b) If each vector is a unit vector, then they are all non-zero. Hence, the result follows from Problem
C5.
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Chapter 1 Quiz

E1 We have

[

3
−2

]

+ 2

[

−1
2

]

=

[

1
2

]

.

E2 A vector orthogonal to~x and~y is ~x × ~y =





















2
−1

7





















. The length of~x × ~y is
√

22 + (−1)2 + 72 =
√

54.

Thus,a unit vector that is orthogonal to both~x and~y is 1√
54





















2
−1

7





















.

E3 proj~u (~v) = ~u ·~v
‖~u ‖2~u =































4/5
4/15
8/15
−4/15































.

perp~u (~v) = ~v − proj~u (~v) =































1/5
−4/15
22/15
49/15































.

E4 Any direction vector of the line is a non-zero scalar multiple of the directed line segment betweenP

andQ. Thus, we can take~d = ~PQ =





















5− (−2)
−2− 1

1− (−4)





















=





















7
−3

5





















. Thus, sinceP(−2,1,−4) is a point on the

line we get that a vector equation of the line is

~x =





















−2
1
−4





















+ t





















7
−3

5





















, t ∈ R

E5 Every vector in the plane satisfiesx1 = 3+ 2x3. Hence, they satisfy





















x1

x2

x3





















=





















3+ 2x3

x2

x3





















=





















3
0
0





















+ x2





















0
1
0





















+ x3





















2
0
1





















for x2, x3 ∈ R. This is a vector equation for the plane.

E6 We have that the vectors~PQ =





















2
2
−2





















and ~PR =





















−5
2
6





















are vectors in the plane. Hence, a normal vector

for the plane is~n =





















2
2
−2





















×





















−5
2
6





















=





















16
−2
14





















. Then, sinceP(1,−1,0) is a point on the plane we get a scalar

equation of the plane is

16x1 − 2x2 + 14x3 = 16(1)− 2(−1)+ 14(0)= 18

or 8x1 − x2 + 7x3 = 9.
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E7 Observe that





















2
6
4





















+





















1
3
3





















=





















3
9
7





















. Hence, by Theorem 1.4.3, we have that

Span







































2
6
4





















,





















1
3
3





















,





















3
9
7







































= Span







































2
6
4





















,





















1
3
3







































SinceB =







































2
6
4





















,





















1
3
3







































cannot be reduced further (it is linearly independent), it is a basis for the

spanned set which is a plane inR3.

E8 Consider




















0
0
0





















= c1





















1
2
1





















+ c2





















1
−1
3





















+ c3





















2
0
1





















=





















c1 + c2 + 2c3

2c1 − c2

c1 + 3c2 + c3





















This gives the system

c1 + c2 + 2c3 = 0

2c1 − c2 = 0

c1 + 3c2 + c3 = 0

Adding the first and the second equation gives 3c1 + 2c3 = 0. Hence, we havec1 = −2
3c3. Fromthe

second equation we havec2 = 2c1 = −4
3c3. Thus,the third equation gives

0 = −2
3

c3 − 4c3 + c3 = −
11
3

c3

Thus,c3 = 0 which implies thatc1 = c2 = 0. Therefore, the set is linearly independent.

E9 (a) To show that

{[

1
2

]

,

[

−1
2

]}

is a basis, we need to show that it spansR2 and that it is linearly

independent.

Consider
[

x1

x2

]

= t1

[

1
2

]

+ t2

[

−1
2

]

=

[

t1 − t2
2t1 + 2t2

]

This givesx1 = t1 − t2 and x2 = 2t1 + 2t2. Solving using substitution and elimination we get

t1 = 1
4(2x1 + x2) andt2 = 1

4(−2x1 + x2). Hence,every vector

[

x1

x2

]

can be written as

[

x1

x2

]

=
1
4

(2x1 + x2)

[

1
2

]

+
1
4

(−2x1 + x2)

[

−1
2

]

So,it spansR2. Moreover, ifx1 = x2 = 0, then our calculations above show thatt1 = t2 = 0, so
the set is also linearly independent. Therefore, it is a basis forR

2.
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(b) Taking x1 = 3 andx2 = 5 in our work above givest1 = 1
4(6+ 5) = 11

4 andt2 = 1
4(−6+ 5) = −1

4.
So,these are the coordinates of~x with respect to the basisB. Indeed we have

[

3
5

]

=
11
4

[

1
2

]

− 1
4

[

−1
2

]

(c) Since~y = 2~x , the coordinates of~y with respect to the basisB aret1 = 11
2 andt2 = −1

2. Indeed
wehave

[

6
10

]

=
11
2

[

1
2

]

− 1
2

[

−1
2

]

E10 Observe that 0, 3− 5(0) so~0 < S , soS is not a subspace.

E11 If d , 0, thena1(0)+ a2(0)+ a3(0) = 0 , d, so~0 < S and thus,S is not a subspace ofR3.

On the other hand, assumed = 0. Observe that, by definition,S is a subset ofR3 and that~0 =





















0
0
0





















∈ S

since takingx1 = 0, x2 = 0, andx3 = 0 satisfiesa1x1 + a2x2 + a3x3 = 0.

Let ~x =





















x1

x2

x3





















, ~y =





















y1

y2

y3





















∈ S . Then they must satisfy the condition of the set, soa1x1+ a2x2+ a3x3 = 0

anda1y1 + a2y2 + a3y3 = 0.
To show thatS is a subspace, we must show thats~x + t~y satisfies the condition ofS . We have

s~x + t~y =





















sx1 + ty1

sx2 + ty2

sx3 + ty3





















and

a1(sx1 + ty1) + a2(sx2 + ty2) + a3(sx3 + ty3) = s(a1x1 + a2x2 + a3x3) + t(a1y1 + a2y2 + a3y3)

= s(0)+ t(0) = 0

Therefore,S is a subspace ofR3.

E12 By the definition ofP, every~x =





















x1

x2

x3





















∈ P satisfiesx1 − 3x2 + x3 = 0. Solving this forx3 gives

x3 = −x1 + 3x2. Consider




















x1

x2

−x1 + 3x2





















= c1





















1
0
−1





















+ c2





















0
1
3





















=





















c1

c2

−c1 + 3c2





















Solving we find thatc1 = x1, c2 = x2 (observe that−c1 + 3c2 = −x1 + 3x2 so the third equation is
also satisfied). Thus,B spansP. Now consider





















0
0
0





















= c1





















1
0
−1





















+ c2





















0
1
3





















=





















c1

c2

−c1 + 3c2





















Comparing entries we get thatc1 = c2 = 0. Hence,B is also linearly independent.

SinceB is linearly independent and spansP, it is a basis forP.
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E13 Sincethe originO(0,0,0) is on the line, we get that the point
Q on the line closest toP is given by ~OQ = proj~d

(

~OP
)

,

where~d =





















3
−2
3





















is a direction vector of the line. Hence,

~OQ =
~OP · ~d
‖~d‖2

~d =





















18/11
−12/11
18/11





















and the closest point isQ(18/11,−12/11,18/11).

x2

x1

x318

11

−
12

11

18

11

2

3

4

3

−2

3

E14 Let Q(0,0,0,1) be a point in the hyperplane. We have that a normal vector to the plane is~n =































1
1
1
1































.

Then, the pointR in the hyperplane closest toP satisfies~PR = proj~n
(

~PQ
)

. Hence,

~OR = ~OP + proj~n
(

~PQ
)

=































3
−2

0
2































− 2
4































1
1
1
1































=































5/2
−5/2
−1/2

3/2































Thenthe distance from the point to the line is the length of~PR.

‖ ~PR‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥































−1/2
−1/2
−1/2
−1/2































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

= 1

E15 The volume of the parallelepiped determined by~u + k~v , ~v , and~w is

|(~u + k~v) · (~v × ~w)| = |~u · (~v × ~w) + k
(

~v · (~v × ~w)
)

|
= |~u · (~v × ~w) + k(0)|

which equals the volume of the parallelepiped determined by~u , ~v , and~w.

E16 FALSE. The pointsP(0,0,0), Q(0,0,1), andR(0,0,2) lie in every plane of the formt1x1 + t2x2 = 0
with t1 andt2 not both zero.

E17 TRUE. This is the definition of a line reworded in terms of a spanning set.

E18 TRUE. By definition of the plane{~v1,~v2} spans the plane. If{~v1,~v2} is linearly dependent, then the set
would not satisfy the definition of a plane, so{~v1,~v2} must be linearly independent. Hence,{~v1,~v2}
is a basis for the plane.

E19 FALSE. The dot product of the zero vector with itself is 0.

E20 FALSE. Let~x =

[

1
0

]

and~y =

[

1
1

]

. Then, proj~x ~y =

[

1
0

]

, while proj~y ~x =

[

1/2
1/2

]

.
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E21 FALSE. If ~y = ~0, then proj~x (~y ) = ~0. Thus,{proj~x (~y ), perp~x (~y )} contains the zero vector so it is
linearly dependent.

E22 TRUE. We have

‖~u × (~v + 3~u)‖ = ‖~u × ~v + 3(~u × ~u)‖ = ‖~u × ~v + ~0‖ = ‖~u × ~v‖

so the parallelograms have the same area.

Chapter 1 Further Problems

F1 The statement is true. Rewrite the conditions in the form

~u · (~v − ~w) = 0, ~u × (~v − ~w) = ~0

The first condition says that~v − ~w is orthogonal to~u , so the angleθ between~u and~v − ~w is π2 radians.
Thus,sinθ = 1, so the second condition tells us that

0 = ‖~u × (~v − ~w)‖ = ‖~u‖‖~v − ~w‖ sinθ = ‖~u‖‖~v − ~w‖

Since‖~u‖ , 0, it follows that‖~v − ~w‖ = 0 and hence~v = ~w.

F2 Since~u and~v are orthogonal unit vectors,~u ×~v is a unit vector orthogonal to the plane containing~u
and~v . Then perp~u×~v (~x ) is orthogonal to~u × ~v , so it lies in the plane containing~u and~v . Therefore,
for somes, t ∈ R, perp~u×~v (~x ) = s~u + t~v . Now since~u · ~u = 1,~u · ~v = 0, and~u · (~u × ~v) = 0,

s = ~u · (s~u + t~v) = ~u · perp~u×~v (~x ) = ~u · (~x − proj~u×~v (~x )) = ~u · ~x − 0

Similarly, t = ~v · ~x . Hence,

perp~u×~v (~x ) = (~u · ~x )~u + (~v · ~x )~v = proj~u (~x ) + proj~v (~x )

F3 (a) We can calculate that both sides of the equation are equal to





















u2v1w2 − u2v2w1 + u3v1w3 − u3v3w1

−u1v1w2 + u1v2w1 + u3v2w3 − u3v3w2

−u1v1w3 + u1v3w1 − u2v2w3 + u2v3w2





















(b) Using part (a), we get that

~u×(~v × ~w) + ~v × (~w × ~u) + ~w × (~u × ~v) =
(

(~u · ~w)~v − (~u · ~v)~w
)

+
(

(~v · ~u)~w − (~v · ~w)~u
)

+
(

(~w · ~v)~u − (~w · ~u)~v
)

= ~0
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F4 If a = b = 0, then SpanB = {s
[

c
d

]

| s ∈ R} , R2. Thus, at least one ofa or b is non-zero. Assume

a , 0. Consider
[

x1

x2

]

= t1

[

a
b

]

+ t2

[

c
d

]

=

[

t1a + t2c
t1b + t2d

]

Sincea , 0, we gett1 =
x1
a − t2 c

a . Hence,

x2 =
bx1

a
− t2

(

bc
a
− d

)

If bc
a − d = 0, thenx2 =

bx1
a andhenceB could not spanR2. Thus, bc

a − d , 0 whichwe rewrite as
ad − bc , 0. Then, we get that

t2 =
1

ad − bc
(−bx1 + ax2)

t1 =
1

ad − bc
(dx1 − cx2)

This implies that ifad − bc , 0, thenB spansR2 and is linearly independent.

F5 (a) Let ~w = perp~v 1
(~v2) = ~v2 − ~v 2·~v 1

‖~v 1‖2~v1. Then,

~w · ~v1 = (~v2 −
~v2 · ~v1

‖~v1‖2
~v1) · ~v1 = ~v2 · ~v1 −

~v2 · ~v1

‖~v1‖2
(~v1 · ~v1) = 0

Hence,{~v1, ~w} is an orthogonal set.

Observe that~w , ~0 as otherwise we would have~v2 =
~v 2·~v 1

‖~v 1‖2~v1 which would contradict{~v1,~v2}
being linearly independent.

Hence, by ProblemC5 in Section 1.5, we have that{~v1, ~w} is linearly independent.

Also, by ProblemC7 in Section 1.4, we have thatP = Span{~v1,~v2} = Span{~v1, ~w}.
Thus,{~v1, ~w} is also a basis forP.

(b) Let~y = ~v1 × ~w. Then, we have that{~v1, ~w, ~y } is an orthogonal set. Moreover, we know~y , ~0
since{~v1, ~w} is linearly independent. Then, by ProblemC5in Section 1.5, we have that{~v1, ~w, ~y }
is linearly independent.

Let ~x ∈ R3. Our work with finding the nearest point~r shows us that~r = ~x + proj~y (~x ) where
~r ∈ Span{~v1, ~w}. Let~r = c1~v1 + c2~w. Then, we have that

c1~v1 + c2~w = ~x +
~x · ~y
‖~y ‖2
~y

~x = c1~v1c2~w −
~x · ~y
‖~y ‖2
~y

Thus,every~x ∈ R3 is a linear combination of~v1, ~w, and~y . Thus,{~v1, ~w, ~y } also spansR3 as
required.
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(c) Since{~v1, ~w, ~y } is a basis forR3, for any~x ∈ R3, there exists uniqued1, d2, d3 ∈ R such that

~x = d1~v1 + d2~w + d3~y

Taking the dot product of both sides with respect to~v1 gives

~x · ~v1 = d1(~v1 · ~v1) + 0

Hence,d1 =
~x ·~v 1

‖~v 1‖2 . Similarly, we getd2 =
~x ·~w
‖~w‖2 , andd3 =

~x ·~y
‖~y ‖2 .

F6 (a) By definition,U ⊕W is a subset ofRn. SinceU andW are subspaces we have~0 ∈ U and~0 ∈W.
Thus,~0 = ~0+ ~0 ∈ U ⊕W soU ⊕W is non-empty.

Let ~x , ~y ∈ U ⊕ W and s, t ∈ R. Then,~x = ~u1 + ~w1 and~y = ~u2 + ~w2 where~u1, ~u2 ∈ U and
~w1, ~w2 ∈W. SinceU andW are subspaces we have that

s~u1 + t~u2 ∈ U ands~w1 + t~w2 ∈W

Thus,
s~x + t~y = s(~u1 + ~w1) + t(~u2 + ~w2) = s~u1 + t~u2 + s~w1 + t~w2 ∈ U ⊕W

Therefore,U ⊕W is a subspace ofRn.

(b) Let ~x ∈ U ⊕W. Then,~x = ~u + ~w for ~u ∈ U and~w ∈W. Then we can write

~u = a1~u1 + · · · + ak~u k

~w = b1~w1 + · · · + bℓ~wℓ

Thus,
~x = a1~u1 + · · · + ak~u k + b1~w1 + · · · + bℓ~wℓ

Hence, Span{~u1, . . . , ~u k, ~w1, . . . , ~wℓ} = U ⊕W.

Consider
c1~u1 + · · · + ck~u k + ck+1~w1 + · · · + ck+ℓ~wℓ = ~0

This implies that
c1~u1 + · · · + ck~u k = −ck+1~w1 − · · · − ck+ℓ~wℓ

The vector on the left is inU and the vector on the right is inW. Hence, both vectors must be the
zero vector. Therefore,c1 = · · · = ck+ℓ = 0 since{~u1, . . . , ~u k} and{~w1, . . . , ~wℓ} are both linearly
independent.

F7 (a) We have

‖~u + ~v‖2 = ‖~u‖2 + 2~u · ~v + ‖~v‖2

‖~u − ~v‖2 = ‖~u‖2 − 2~u · ~v + ‖~v‖2

By subtraction,
1
4
‖~u + ~v‖2 − 1

4
‖~u − ~v‖2 = ~u · ~v
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(b) By addition of the above expressions,

‖~u + ~v‖2 + ‖~u − ~v‖2 = 2‖~u‖2 + 2‖~v‖2

(c) The vectors~u + ~v and~u − ~v are the diagonal vectors of the parallelogram. Take the equation of
part (a) and divide by‖~u‖‖~v‖ to obtain an expression for the cosine of the angle between~u and
~v , in terms of the lengths of~u , ~v , and the diagonal vectors. The cosine is 0 if and only if the
diagonals are of equal length. In this case, the parallelogram is a rectangle.

Part (b) says that the sum of the squares of the two diagonal lengths is the sum of the squares of
the lengths of all four sides of the parallelogram. You can also see that this is true by using the
cosine law and the fact that if the angle between~u and~v is θ, then the angle at the next vertex of
the parallelogram isπ − θ.

F8 P, Q, andR are collinear if and only if for some scalart, ~PQ = t ~PR. Thus,~q − ~p = t(~r − ~p ), or
~q = (1− t)~p + t~r. Then

(~p × ~q ) + (~q × ~r) + (~r × ~p ) = ~p ×
(

(1− t)~p + t~r
)

+
(

(1− t)~p + t~r
)

× ~r + ~r × ~p

= t~p × ~r + ~p × ~r − t~p × ~r + ~r × ~p = ~0

since~p × ~r = −~r × ~p .

F9 (a) Suppose that the skew lines are~x = ~p + s~c and~x = ~q + t~d. Then the cross-product of the two
direction vectors~n = ~c × ~d is perpendicular to both lines, so the plane throughP with normal~n
contains the first line, and the plane throughQ with normal~n contains the second line. Since the
two planes have the same normal vector, they are parallel planes.

(b) We find that~n =





















2
0
1





















×





















1
1
3





















=





















−1
−5
2





















. Thus, the equation of the plane passing throughP(1,4,2) is

−1x1− 5x2+ 2x3 = −17. Hence, we find that the distance from the pointQ(2,−3,1) to this plane
is 32/

√
30 which is the distance between the skew lines.
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