
Chapter 2

Problem 2.1
1) To derive the Fourier series coefficients in the expansionof x(t), we have

xn = 1

4

∫ 1

−1
e− j 2πnt/4 dt

= 1

−2 j πn

[

e− j 2πn/4 − ej 2πn/4
]

(1)
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sinc
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where sinc(x) is defined as

sinc(x) = sin(πx)

πx
(3)

2) Obviously, all thexn’s are real (sincex(t) is real and even), so
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Note that for evenn’s, xn = 0 (with the exception ofn = 0, wherea0 = c0 = 1 andx0 = 1
2). Using these

coefficients, we have
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A plot of the Fourier series approximations to this signal over one period forn = 0, 1, 3, 5, 7, 9 is shown in
Figure 1.
3) Note thatxn is always real. Therefore, depending on its sign, the phase is either zero orπ . The magnitude
of thexn’s is 1

2

∣

∣sinc
(

n
2

)∣

∣ . The discrete and phase spectrum are shown in Figure 2.

Problem 2.2
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Figure 1: Various Fourier series approximations for the rectangular pulse in Computer Problem 1
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Figure 2: The discrete and phase spectrum of the signal in Computer Problem 1
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Figure 3: The discrete spectrum of the signal

1) We have

xn = 1

T0

∫ T0/2

−T0/2
x(t)e− j 2πnt/T0dt (6)

= 1

2

∫ 1

−1
3(t)e− j πntdt (7)

= 1

2

∫ +∞

−∞
3(t)e− j πntdt (8)

= 1

2
F[3(t)] f =n/2 (9)

= 1

2
sinc2(

n

2
) (10)

(11)

where we have used the facts that3(t) vanishes outside the[−1, 1] interval and that the Fourier transform
of 3(t) is sinc2( f ). This result can also be obtained by using the expression for3(t) and integrating by
parts. Obviously, we havexn = 0 for all even values ofn except forn = 0.
2) A plot of the discrete spectrum ofx(t) is presented in Figure 3
3) A plot of the discrete spectrum{yn} is presented in Figure 4
The MATLAB script for this problem is given next.
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Figure 4: The discrete spectrum of the signal
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% MATLAB script for Computer Problem 2.2.
echo on
n=[−20:1:20];
% Fourier series coefficients of x(t) vector
x=.5*(sinc(n/2)).ˆ2;
% sampling interval
ts=1/40;
% time vector
t=[−.5:ts:1.5];
% impulse response 10
fs=1/ts;
h=[zeros(1,20),t(21:61),zeros(1,20)];
% transfer function
H=fft(h)/fs;
% frequency resolution
df=fs/80;
f=[0:df:fs]−fs/2;
% rearrange H
H1=fftshift(H);
y=x.*H1(21:61); 20
% Plotting commands follow.

Problem 2.3
The common magnitude spectrum is presented in Figure 5. The two phase spectrum of the two signals plotted
on the same axes are given in Figure 6.
The MATLAB script for this problem follows.

% MATLAB script for Computer Problem 2.3.
df=0.01;
fs=10;
ts=1/fs;
t=[−5:ts:5];
x1=zeros(size(t));
x1(41:51)=t(41:51)+1;
x1(52:61)=ones(size(x1(52:61)));
x2=zeros(size(t));
x2(51:71)=x1(41:61); 10
[X1,x11,df1]=fftseq(x1,ts,df);
[X2,x21,df2]=fftseq(x2,ts,df);
X11=X1/fs;
X21=X2/fs;
f=[0:df1:df1*(length(x11)−1)]−fs/2;
plot(f,fftshift(abs(X11)))
figure
plot(f(500:525),fftshift(angle(X11(500:525))),f(500:525),fftshift(angle(X21(500:525))),’--’)
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Figure 5: The common magnitude spectrum of the signalsx1(t) andx2(t)
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Figure 6: The phase spectrum of the signals1x1(t) and1x2(t)
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Problem 2.4
The Fourier transform of the signalx(t) is

1

1 + j 2π f

Figures 7 and 8 present the magnitude and phase spectrum of the input signalx(t).
2) The fourier transform of the output signaly(t) is

y( f ) =
{ 1

1+ j 2π f | f | ≤ 1.5
0 otherwise

The magnitude and phase spectrum ofy(t) is given in Figures 9 and 10, respectively.
3) The inverse Fourier transform of the output signal is parented in Figure 11
The MATLAB script for this problem is given next

% MATLAB script for Computer Problem 2.4.
df= 0.01;
f = −4:df:4;
x f = 1./(1+2*pi*i*f );
plot(f, abs(x f ));
figure;
plot(f, angle(x f ));
indH = find(abs(f ) <= 1.5);
H f = zeros(1, length(x f ));
H f (indH) = cos(pi*f (indH)./3); 10
y f = x f.*H f ;
figure;
plot(f,abs(y f ));
axis([−1.5 1.5 0 16]);
figure;
plot(f, angle(y f ));

y f (401) = 10ˆ30;
y t = ifft (y f, ’symmetric’);
figure; 20
plot(y t)

Problem 2.5
Choosing the sampling interval to bets = 0.001 s, we have a sampling frequency offs = 1/ts = 1000 Hz.
Choosing a desired frequency resolution ofd f = 0.5 Hz, we have the following.
1) Plots of the signal and its magnitude spectrum are given inFigures 12 and 13, respectively. Plots are
generated by Matlab.
2) Choosingf0 = 200 Hz, we find the lowpass equivalent tox(t) by using the loweq.m function. Then using
fftseq.m, we obtain its spectrum; we plot its magnitude spectrum in Figure 14. The MATLAb functions
loweq.m and fftseq.m are given next.

function [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts)
%FFTSEQ generates M, the FFT of the sequence m.
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Figure 7: Magnitude spectrum ofx(t)
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Figure 8: Phase spectrum ofx(t)
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Figure 9: Magnitude spectrum ofy(t)
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Figure 10: Phase spectrum ofy(t)
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Figure 11: Inverse Fourier transform
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Figure 12: The signalx(t)
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Figure 13: The magnitude spectrum ofx(t)
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% The sequence is zero-padded to meet the required frequencyresolution df.
% ts is the sampling interval. The output df is the final frequency resolution.
% Output m is the zero-padded version of input m. M is the FFT.
fs=1/ts;
if nargin == 2

n1=0; 10
else

n1=fs/df;
end
n2=length(m);
n=2ˆ(max(nextpow2(n1),nextpow2(n2)));
M=fft(m,n);
m=[m,zeros(1,n−n2)];
df=fs/n;

function xl=loweq(x,ts,f0)
% xl=loweq(x,ts,f0)
%LOWEQ returns the lowpass equivalent of the signal x
% f0 is the center frequency.
% ts is the sampling interval.
%
t=[0:ts:ts*(length(x)−1)];
z=hilbert(x);
xl=z.*exp(−j* 2*pi*f0*t);

It is seen that the magnitude spectrum is an even function in this case because we can write

x(t) = Re[sinc(100t)ej ×400π t ] (12)

Comparing this to
x(t) = Re[xl (t)e

j 2π× f0t ] (13)

we conclude that
xl (t) = sinc(100t) (14)

which means that the lowpass equivalent signal is a real signal in this case. This, in turn, means that
xc(t) = xl (t) andxs(t) = 0. Also, we conclude that







V(t) = |xc(t)|

2 =
{

0, xc(t) ≥ 0
π, xc(t) < 0

(15)

Plots ofxc(t) andV(t) are given in Figures 15 and 16, respectively. Note that choosing f0 to be the frequency
with respect to whichX( f ) is symmetric result in these figures.

Problem 2.6
The Remez algorithm requires that we specify the length of the FIR filterM, the passband edge frequencyf p,
the stopband edge frequencyfs, and the ratioδ2/δ1. Here,δ1 andδ2 denote passband and stopband ripples,
respectively. The filter lengthM can be approximated using

M̂ = −20 log10

√
δ1δ2 − 13

14.61 f
+ 1
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Figure 14: The magnitude spectrum ofxl (t)
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Figure 15: The signalxC(t)
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Figure 16: The signalV(t)
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where1 f is the transition bandwidth1 f = fs − f p

1) Figure 17 shows the impulse response coefficients of the FIR filter.
2) Figures 18 and 19 show the magnitude and phase of the frequency response of the filter, respectively.
The MATLAB script for this problem is given next

% MATLAB script for Computer Problem 2.6.
fp = 0.4;
fs = 0.5;
df = fs−fp;
Rp = 0.5;
As = 40;
delta1=(10ˆ(Rp/20)−1)/(10ˆ(Rp/20)+1);
delta2=(1+delta1)*(10ˆ(−As/20));
%Calculate approximate filter length
Mhat=ceil((−20*log10(sqrt(delta1*delta2))−13)/(14.6*df)+1); 10
f=[0 fp fs 1];
m=[1 1 0 0];
w=[delta2/delta11];
h=remez(Mhat+20,f,m,w);
[H,W]=freqz(h,[1],3000);
db = 20*log10(abs(H));
% plot results
stem(h);
figure;
plot(W/pi, db) 20
figure;
plot(W/pi, angle(H));
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Figure 17: Impulse response coefficients of the FIR filter
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Figure 18: Magnitude of the frequency response of the FIR filter
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Problem 2.7
1) The impulse response coefficients of the filter is presented in Figure 20.
2) The magnitude of the frequency response of the filter is given in Figure 21.
The MATLAB script for this problem is given next

% MATLAB script for Computer Problem 2.7.
f=[0 0.01 0.1 0.5 0.6 1];
m=[0 0 1 1 0 0];
delta1= 0.01;
delta2= 0.01;
df = 0.1 − 0.01;
Mhat=ceil((−20*log10(sqrt(delta1*delta2))−13)/(14.6*df)+1);
w=[1 delta2/delta1 1];
h=remez(Mhat+20,f,m,w,’hilbert’ );

10
[H,W]=freqz(h,[1],3000);
db = 20*log10(abs(H));
% plot results
stem(h);
figure;
plot(W/pi, db)
figure;
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Figure 20: The impulse response coefficients of the filter
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Figure 21: The magnitude of the frequency response of the filter
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Figure 22: Impulse response of the filter

plot(W/pi, angle(H));

20

Problem 2.8
1) The impulse response of the filter is given in Figure 22.
2) The magnitude of the frequency response of the filter is presented in Figure 23.
3) The filter outputy(n) andx(n) are presented in Figure 24. It should be noted thaty(n) is the derivative
of x(n).
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Figure 23: Magnitude of the frequency response of the filter
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