Chapter 1

Numbers, Algebra and Geometry

1.2.3 Exercises

■ 1(a)

$$2^3 \times 2^{-4} = 2^3 \div 2^4 = 1/2$$

1(b)

$$2^3 \div 2^{-4} = 2^3 \times 2^4 = 2^{3+4} = 2^7$$

1(c)

$$(2^3)^{-4} = 1/(2^3)^4 = 1/2^{12}$$

1(d)

$$3^{1/3} \times 3^{5/3} = 3^{(1/3+5/3)} = 3^2$$

1(e)

$$36^{-1/2} = 1/(36)^{1/2} = 1/6$$

1(f)

$$16^{3/4} = (16^{1/4})^3 = 2^3$$

■ 2(a)

$$(21 + ((4 \times 3) \div 2))$$

2(b)

$$(17 - 6^{(2+3)})$$

2(c)

$$((4 \times 2^3) - ((7 \div 6) \times 2))$$

2(d)

$$((2 \times 3) - (6 \div 4) + 3^{(2^{-5})})$$

■ 3(a)

$$(7 + 5\sqrt{2})^3 = (7 + 5\sqrt{2})(7 + 5\sqrt{2})^2$$

$$= (7 + 5\sqrt{2})(99 + 70\sqrt{2})$$

$$= 7 \times 99 + 5 \times 70 \times 2 + (7 \times 70 + 5 \times 99)\sqrt{2}$$

$$= 1393 + 985\sqrt{2}$$

3(b)

$$(2 + \sqrt{2})^4 = (2 + \sqrt{2})^2 (2 + \sqrt{2})^2$$
$$= (6 + 4\sqrt{2}) (6 + 4\sqrt{2})$$
$$= 68 + 48\sqrt{2}$$

3(c) We are required to find whole numbers x, y so that $x + y\sqrt{2} = \sqrt[3]{7 + 5\sqrt{2}}$.

$$x + y\sqrt{2} = \sqrt[3]{7 + 5\sqrt{2}}$$

$$\Rightarrow (x + y\sqrt{2})^3 = 7 + 5\sqrt{2}$$

$$\Rightarrow x^3 + 3x^2y\sqrt{2} + 6xy^2 + 2y^3\sqrt{2} = 7 + 5\sqrt{2}$$

$$\Rightarrow (x^3 + 6xy^2) + (3x^2y + 2y^3)\sqrt{2} = 7 + 5\sqrt{2}$$

$$\Rightarrow x^3 + 6xy^2 = 7$$
and $3x^2y + 2y^3 = 5$

By inspection x = 1, y = 1, so $\sqrt[3]{7 + 5\sqrt{2}} = 1 + \sqrt{2}$.

3(d) We want to find x, y with $x + y\sqrt{2} = \sqrt{\frac{11}{2} - 3\sqrt{2}}$.

$$x + y\sqrt{2} = \sqrt{\frac{11}{2} - 3\sqrt{2}}$$

$$\Rightarrow (x + y\sqrt{2})^2 = \frac{11}{2} - 3\sqrt{2}$$

$$\Rightarrow x^2 + 2y^2 + 2xy\sqrt{2} = \frac{11}{2} - 3\sqrt{2}$$

$$\Rightarrow x^2 + 2y^2 = \frac{11}{2}$$
and $2xy = -3$
substituting for $y = x^2 + 2\left(-\frac{3}{2x}\right)^2 = \frac{11}{2}$

$$\Rightarrow 2x^4 - 11x^2 + 9 = 0$$
this factorizes: $(2x^2 - 9)(x^2 - 1) = 0$

Consequently x=1 or x=-1. $(x=\pm\frac{3}{\sqrt{2}})$ are discarded since they are not rational.) Since $x+y\sqrt{2}$ is to be a positive number we discard $x=1,\ y=-\frac{3}{2}$. So $x=-1,\ y=\frac{3}{2}$.

4

$$\frac{1}{a+b\sqrt{c}} = \frac{1}{a+b\sqrt{c}} \times \frac{a-b\sqrt{c}}{a-b\sqrt{c}}$$
$$= \frac{a-b\sqrt{c}}{a^2-b^2\sqrt{c}}$$

4(a)

$$\frac{1}{7+5\sqrt{2}} = \frac{7-5\sqrt{2}}{7^2-5^2\times 2}$$
$$= -7+5\sqrt{2}$$

$$\begin{aligned} \frac{2+3\sqrt{2}}{9-7\sqrt{2}} &= (2+3\sqrt{2}) \times \frac{9+7\sqrt{2}}{9^2 - (-7)^2 \times 2} \\ &= \frac{60+41\sqrt{2}}{9^2 - (-7)^2 \times 2} \\ &= -\frac{60}{17} - \frac{41}{17}\sqrt{2} \end{aligned}$$

4(c)

$$\frac{4-2\sqrt{3}}{7-3\sqrt{3}} = (4-2\sqrt{3}) \times \frac{7+3\sqrt{3}}{7^2-3^2 \times 3}$$
$$= \frac{10-2\sqrt{3}}{22}$$
$$= \frac{5}{11} - \frac{\sqrt{3}}{11}$$

4(d)

$$\frac{2+4\sqrt{5}}{4-\sqrt{5}} = (2+4\sqrt{5}) \times \frac{4+\sqrt{5}}{4^2-5}$$
$$= \frac{28+18\sqrt{5}}{11}$$
$$= \frac{28}{11} + \frac{18}{11}\sqrt{5}$$

■ 5 2 - 1² = 1,2 -
$$\left(\frac{3}{2}\right)^2 = -\frac{1}{4}$$
, $2 - \left(\frac{7}{5}\right)^2 = \frac{1}{25}$, $2 - \left(\frac{17}{12}\right)^2 = -\frac{1}{144}$, $2 - \left(\frac{41}{29}\right)^2 = \frac{1}{841}$, and $2 - \left(\frac{99}{70}\right)^2 = -\frac{1}{4900}$.

Taking m=1, n=1 then $\frac{m}{n}=\frac{1}{1}$ and $\frac{m+2n}{m+n}=\frac{3}{2}$ Taking m=3, n=2 then $\frac{m}{n}=\frac{3}{2}$ and $\frac{m+2n}{m+n}=\frac{7}{5}$

etc.

$$2 - \left(\frac{m}{n}\right)^2 = \frac{2n^2 - m^2}{n^2}$$
$$2 - \left(\frac{m+2n}{m+n}\right)^2 = \frac{m^2 - 2n^2}{m^2 + 2mn + n^2}$$
$$= -\frac{(2n^2 - m^2)}{n^2 + (m^2 + 2mn)}$$

Observe that $m^2 + 2mn$ is positive. From this we can see that the error in using $\frac{m+2n}{m+n}$ as an approximation to $\sqrt{2}$ has the opposite sign to the error using $\frac{m}{n}$; also $n^2 + (m^2 + m^2)$ 2mn) > n^2 so

$$\left|2 - \left(\frac{m+2n}{m+n}\right)^2\right| < \left|2 - \left(\frac{m}{n}\right)^2\right|$$

Thus the error using $\frac{m+2n}{m+n}$ is smaller than the error in using $\frac{m}{n}$.

The next three terms are obtained as follows:

Taking m = 99, n = 70 then $\frac{m+2n}{m+n} = \frac{239}{169}$

Taking m = 239, n = 169 then $\frac{m+2n}{m+n} = \frac{577}{408}$. Taking m = 577, n = 408 then $\frac{m+2n}{m+n} = \frac{1393}{985}$.

1.2.6 Exercises

■ 6
$$(\sqrt{5} + \sqrt{13})^2 = 5 + 2\sqrt{5} \sqrt{13} + 13$$

 $= 5 + 2\sqrt{65} + 13$
 $> 5 + 2 \times 8 + 13 = 34$
 $< 5 + 2 \times 9 + 13 = 36$
 $(\sqrt{3} + \sqrt{19})^2 = 3 + 2\sqrt{3} \sqrt{19} + 19$
 $= 3 + 2\sqrt{57} + 19$
 $> 3 + 2 \times 7 + 19 = 36$
Hence $\sqrt{3} + \sqrt{19} > \sqrt{5} + \sqrt{13}$

■ 7(a) $\{x: |x-4| \le 6\}$ is the set of points whose distance on the number line from 4 is less than or equal to 6 so it is the set of x satisfying

$$4 - 6 \le x \le 4 + 6$$

i.e.

$$-2 \le x \le 10$$

which is the closed interval [-2, 10].

7(b) $\{x: |x+3| < 2\}$ is the set of points with distance strictly less than 2 from -3 so it is the set of x satisfying

$$-2 - 3 < x < -3 + 2$$

 $-5 < x < -1$

which is the open interval (-5, -1).

7(c) $\{x: |2x-1| \le 7\}$ is the set of points x with the distance of 2x from 1 being less than or equal to 7:

$$1-7 \le 2x \le 1+7$$
 equivalently
$$-6 \le 2x \le 8$$
 i.e.
$$-3 \le x \le 4$$

which is the interval [-3, 4].

7(d) $\{x: |\frac{1}{4}x + 3| < 3\}$ is the set of x satisfying

$$-3 - 3 < \frac{1}{4}x < -3 + 3$$
$$-6 < \frac{1}{4}x < 0$$

equivalently, multiplying by 4 -24 < x < 0

which is the interval (-24, 0).

■ 8(a) The interval (1, 7) is the set of x satisfying 1 < x < 7. The midpoint of this interval is 4, so the interval is the set of points with distance strictly less than 3 from 4:

$$4 - 3 < x < 4 + 3$$

This is the set $\{x : |x-4| < 3\}$.

8(b) [-4, -2] has midpoint -3 and may be written as

$$-3 - 1 \le x \le -3 + 1$$

i.e. the set $\{x : |x+3| \le 1\}$.

8(c) (17, 26) has midpoint $21\frac{1}{2}$. It is the set of x such that

$$21\frac{1}{2} - 4\frac{1}{2} < x < 21\frac{1}{2} + 4\frac{1}{2}$$

This may be tidied up by multiplying by 2 to give

$$43 - 9 < 2x < 43 + 9$$

This is the set $\{x : |2x - 43| < 9\}$.

8(d) $\left[-\frac{1}{2}, \frac{3}{4}\right]$ has midpoint $\frac{1}{8}$, so is the set of x satisfying

$$\frac{1}{8}-\frac{5}{8}\leq x\leq \frac{1}{2}+\frac{5}{8}$$
 multiplying by
$$8\qquad 1-5\leq 8x\leq 1+5$$

This is the set $\{x : |8x - 1| \le 5\}$.

■ 9(a) False: for a counterexample take a = 1, b = 2, c = 1, d = 3.

9(b) True: $c < d \Rightarrow -d < -c$ (multiplying by -1 and using 1.2f); also a < b so applying (1.2a) a - d < b - c as required.

9(c) False: take a = 1, b = 4, c = -3, d = -1.

9(d) False: take a = -1, b = 1.

If a, b, c, d are all strictly positive then (a) is false (the counterexample given above will do). However, (c) and (d) are true (1.2f and 1.2g respectively).

■ 10(a) Let T be the total time taken; d_1 , d_2 the distances travelled at speeds v_1 , v_2 respectively.

Now,
$$d_1 = v_1 \frac{T}{2}$$
 and $d_2 = v_2 \frac{T}{2}$.

The average speed is

$$\begin{aligned} v_{a} &= \frac{d_{1} + d_{2}}{T} \\ &= \frac{v_{1} \frac{T}{2} + v_{2} \frac{T}{2}}{T} \\ &= \frac{v_{1} + v_{2}}{2} \end{aligned}$$

10(b) Let D be the total distance travelled; t_1 , t_2 be the times travelled at speeds v_1 , v_2 respectively.

$$\frac{D}{2} = v_1 t_1 = v_2 t_2.$$

The average speed is

$$v_b = \frac{D}{t_1 + t_2}$$

$$= \frac{D}{\frac{D}{2v_1} + \frac{D}{2v_2}}$$

$$= \frac{2v_1v_2}{v_1 + v_2}$$

By the arithmetic–geometric mean inequality of Example 1.9

$$\frac{1}{4}(v_1+v_2)^2 > v_1v_2 \quad \text{(strict inequality since } v_1 \neq v_2\text{)}$$
 so
$$\frac{v_1+v_2}{2} > \frac{2v_1v_2}{v_1+v_2}$$

$$v_a > v_b$$

So the average speed is less – and thus the journey longer – if two different speeds are used over equal distances compared with the same two speeds for equal times.

1.3.2 Exercises

■ 11(a)

$$x^3 \times x^{-4} = x^{-1}$$

11(b)

$$x^3 \div x^{-4} = x^3 \times x^4$$
$$= x^7$$

$$(x^3)^{-4} = x^{-12}$$

$$x^{1/3} \times x^{5/3} = x^{(1/3+5/3)}$$

= x^2

$$(4x^8)^{-1/2} = 1/(2x^4)$$

$$\left(\frac{3}{2\sqrt{x}}\right)^{-2} = \left(\frac{2\sqrt{x}}{3}\right)^2$$
$$= \frac{4}{9}x$$

11(g)

$$\sqrt{x}(x^2 - \frac{2}{x}) = x^{5/2} - 2/\sqrt{x}$$

$$\left(5x^{1/3} - \frac{1}{2x^{1/3}}\right)^2 = 25x^{2/3} - 5 + \frac{1}{4x^{2/3}}$$

$$\frac{2x^{1/2} - x^{-1/2}}{x^{1/2}} = 2 - \frac{1}{x}$$

$$\frac{(a^2b)^{1/2}}{(ab^{-2})^2} = \frac{ab^{1/2}}{a^2b^{-4}}$$
$$= a^{-1}b^{9/2}$$
$$= b^{9/2}/a$$

11(k)

$$(4ab^{2})^{-3/2} = (2a^{1/2}b)^{-3}$$
$$= \frac{1}{8a^{3/2}b^{3}}$$

■ 12(a)

$$x^{2}y - xy^{2} = xy(x) - xy(y)$$
$$= xy(x - y)$$

12(b)

$$x^2yz - xy^2z + 2xyz^2 = xyz(x - y + 2z)$$

12(c)

$$ax - 2by - 2ay + bx = ax + bx - 2ay - 2by$$

= $(a + b)x - 2(a + b)y$
= $(a + b)(x - 2y)$

12(d)

$$x^{2} + 3x - 10 = x^{2} + (5 - 2)x + (5)(-2)$$
$$= (x + 5)(x - 2)$$

12(e)

$$x^{2} - \frac{1}{4}y^{2} = (x - \frac{1}{2}y)(x + \frac{1}{2}y)$$

12(f)

$$81x^4 - y^4 = (9x^2 - y^2)(9x^2 + y^2)$$
$$= (3x - y)(3x + y)(9x^2 + y^2)$$

■ 13(a)

$$\frac{x^2 - x - 12}{x^2 - 16} = \frac{(x+3)(x-4)}{(x+4)(x-4)}$$
$$= \frac{x+3}{x+4}, \quad x \neq 4$$

13(b)

$$\frac{x-1}{x^2 - 2x - 3} - \frac{2}{x+1} = \frac{x-1}{(x+1)(x-3)} - \frac{2}{x+1}$$
$$= \frac{(x-1) - 2(x-3)}{(x+1)(x-3)}$$
$$= \frac{5-x}{(x+1)(x-3)}$$

13(c)

$$\frac{1}{x^2 + 3x - 10} + \frac{1}{x^2 + 17x + 60} = \frac{1}{(x+5)(x-2)} + \frac{1}{(x+5)(x+12)}$$

$$= \frac{(x+12) + (x-2)}{(x+5)(x-2)(x+12)}$$

$$= \frac{2x+10}{(x+5)(x-2)(x+12)}$$

$$= \frac{2}{(x-2)(x+12)}$$

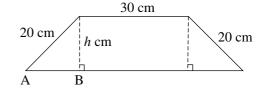
13(d)

$$(3x + 2y)(x - 2y) + 4xy = 3x^{2} - 4xy - 4y^{2} + 4xy$$
$$= 3x^{2} - 4y^{2}$$
$$= (\sqrt{3}x - 2y)(\sqrt{3}x + 2y)$$

■ 14 By Pythagoras' theorem

$$AB^2 = 20^2 - h^2$$

Hence length of longer side is $30 + 2\sqrt{(20^2 - h^2)}$ and area is $h(30 + \sqrt{(20^2 - h^2)})$ cm².



15

$$C = x(300 - 2x)(200 - 2x) \text{ mm}^3$$

$$= x(300 - 2x)(200 - 2x)/1000 \text{ cm}^3$$

$$= 4x(140 - x)(100 - x)/1000 \text{ ml}$$

$$= x(150 - x)(100 - x)/250 \text{ ml}$$

■ 16(a)

$$x^{2} + x - 12 = \left(x + \frac{1}{2}\right)^{2} - 12 - \frac{1}{4}$$
$$= \left(x + \frac{1}{2}\right)^{2} - \frac{49}{4}$$

16(b)

$$3 - 2x + x^{2} = 3 + (1 - x)^{2} - 1$$
$$= 2 + (1 - x)^{2}$$
$$= 2 + (x - 1)^{2}$$

16(c)

$$(x-1)^2 - (2x-3)^2 = x^2 - 2x + 1 - \left\{4x^2 - 12x + 9\right\}$$

$$= -3x^2 + 10x - 8$$

$$= -3\left(x^2 - \frac{10}{3}x\right) - 8$$

$$= -3\left\{\left(x - \frac{5}{3}\right)^2 - \frac{25}{9}\right\} - 8$$

$$= -3\left(x - \frac{5}{3}\right)^2 + \frac{1}{3}$$

16(d)

$$1 + 4x - x^{2} = 1 - (x - 2)^{2} + 4$$
$$= 5 - (x - 2)^{2}$$

1.3.4 Exercises

17

$$m = p\sqrt{\frac{s+t}{s-t}}$$

$$\Rightarrow m^2 = p^2 \left(\frac{s+t}{s-t}\right)$$

$$m^2(s-t) = p^2(s+t)$$

$$s(m^2 - p^2) = t(m^2 + p^2)$$

$$\Rightarrow s = (m^2 + p^2)t/(m^2 - p^2), m^2 \neq p^2$$

18

$$u = \frac{x^2 + t}{x^2 - t}$$

$$\Rightarrow ux^2 - ut = x^2 + t$$

$$t + ut = ux^2 - x^2$$

$$t + ut = ux^2 - x^2$$

$$t(1 + u) = x^2(u - 1)$$

$$\Rightarrow t = x^2(u - 1)/(1 + u), u \neq -1$$

19

$$\frac{1}{1-t} - \frac{1}{1+t} = 1$$

$$\Rightarrow 1 + t - (1-t) = (1-t)(1+t)$$

$$2t = 1 - t^{2}$$

$$\Rightarrow t^{2} + 2t - 1 = 0$$

$$(t+1)^{2} = 2$$

$$\Rightarrow t = -1 \pm \sqrt{2}$$

20

$$\frac{3c^2 + 3xc + x^2}{3c^2 + 3yc + y^2} = \frac{yV_1}{xV_2}$$

$$x = 4, \ y = 6, \ V_1 = 120, \ V_2 = 315$$

$$\Rightarrow \frac{3c^2 + 12c + 16}{3c^2 + 18c + 36} = \frac{720}{1260}$$

$$\Rightarrow 7(3c^2 + 12c + 16) = 4(3c^2 + 18c + 36)$$

$$21c^2 + 84c + 112 = 12c^2 + 72c + 144$$

$$9c^2 + 12c - 32 = 0$$

$$(3c - 4)(3c + 8) = 0$$

$$c = 4/3 \quad \text{or} \quad -8/3$$

Since c > 0, choose c = 4/3.

21

$$\frac{2p+1}{p+5} + \frac{p-1}{p+1} = 2$$

$$(2p+1)(p+1) + (p-1)(p+5) = 2(p+5)(p+1)$$

$$2p^2 + 3p + 1 + p^2 + 4p - 5 = 2p^2 + 12p + 10$$

$$\Rightarrow p^2 - 5p - 14 = 0$$

$$(p-7)(p+2) = 0$$

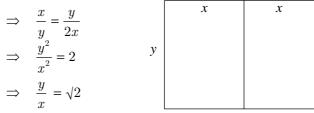
$$\Rightarrow p = 7 \text{ or } -2$$

■ 22 Perimeter = 2(length + breadth)= 6 breadth

since length is twice breadth.

Hence breadth is 5 m and length is 10 m.

■ 23(a) Same shape implies ratios of corresponding sides are equal.



 $\Rightarrow \frac{9}{2} = 2$

23(b) Same shape implies ratios of corresponding sides are equal.

$$\Rightarrow \frac{x}{y} = \frac{y}{x+y}$$

$$\Rightarrow \frac{x}{y}(x+y) = y$$

$$\Rightarrow x^2 + xy = y^2$$

$$\Rightarrow \left(\frac{y}{x}\right)^2 - \left(\frac{y}{x}\right) - 1 = 0$$

$$\Rightarrow \frac{y}{x} = \frac{1+\sqrt{(1+4)}}{2} \quad \left(\text{since } \frac{y}{x} > 0\right)$$

$$\Rightarrow \frac{y}{x} = \frac{1}{2} + \frac{1}{2}\sqrt{5}$$

(This result is different from foolscap paper. The description is only an approximation.)

■ 24(a) In the case x > 0, multiplying both sides of the inequality by x gives 5 < 2x so the solution is $x > \frac{5}{2}$.

In the case x < 0, multiplying by x gives 5 > 2x so $x < \frac{5}{2}$, but since x < 0 the solution in this case is x < 0.

Combining these, the solution is x < 0, or $x > \frac{5}{2}$.

24(b) In the case 2 - x > 0, multiplying by 2 - x gives 1 < 2 - x so x < 1. In the case 2 - x < 0, multiplying by 2 - x gives 1 > 2 - x so x > 1, but since 2 - x < 0 the solution is x > 2 for this case.

The complete solution set is therefore $\{x: x < 1, \text{ or } x > 2\}$.

24(c) In the case x-1>0 multiplying by x-1 gives 3x-2>2(x-1) so x>0.

However, x - 1 > 0 (i.e. x > 1) so the solution in this case is x > 1.

If x-1 < 0, multiplying by x-1 gives 3x-2 < 2(x-1) so x < 0.

The complete solution set is $\{x: x < 0, \text{ or } x > 1\}$.

24(d) If 3x - 2 and x + 4 are either both positive or both negative (i.e. if (3x - 2)(x + 4) > 0) then multiplying the inequality by (3x - 2)(x + 4) gives 3(x + 4) > 3x - 2, i.e. 12 > -2. This holds for all x. However, (3x - 2)(x + 4) > 0 so x < -4 or $x > \frac{2}{3}$.

If just one of 3x - 2, x + 4 is negative (i.e. (3x - 1)(x + 4) < 0) then multiplying by (3x - 2)(x + 4) gives 3(x + 4) < 3x - 2. This is equivalent to 12 < -2. There are no solutions in this case. The solution set is $\{x : x < -4, \text{ or } x > \frac{2}{3}\}$.

■ 25 If $x \ge 0$ then |x| = x so $x^2 < 2 + x$ or equivalently $x^2 - x - 2 < 0$. $x^2 - x - 2$ factorizes as (x-2)(x+1) and so is negative for -1 < x < 2. Since $x \ge 0$, the solution in this case is $0 \le x < 2$.

If x < 0 then |x| = -x so the inequality becomes $x^2 < 2 - x$ or equivalently $x^2 + x - 2 < 0$. $x^2 + x - 2$ factorizes as (x + 2)(x - 1). $(x + 2)(x - 1) < 0 \Rightarrow -2 < x < 1$. Since x < 0 the solution is -2 < x < 0.

Combining these two cases, the solution set is $\{x : -2 < x < 2\}$.

■ 26(a)

$$x^{2} + 3x - 10 = \left(x + \frac{3}{2}\right)^{2} - 10 - \frac{9}{4}$$
$$= \left(x + \frac{3}{2}\right)^{2} - \left(\frac{7}{2}\right)^{2}$$
$$\ge -\left(\frac{7}{2}\right)^{2}$$

Equality occurs when $x = -\frac{3}{2}$.

26(b)

$$18 + 4x - x^{2} = 18 - [x^{2} - 4x]$$

$$= 18 - [(x - 2)^{2} - 4]$$

$$= 22 - (x - 2)^{2}$$

$$\leq 22$$

Equality occurs when x = 2.

26(c)

$$x + \frac{4}{x} = \left(\sqrt{x} - \frac{2}{\sqrt{x}}\right)^{2} + 2 \quad \text{for } x > 0$$

$$\geq 2$$

Equality occurs when x = 2.

■ 27(a)

$$\frac{1}{(x+1)(x-2)} \equiv \frac{A}{x+1} + \frac{B}{x-2}$$
$$\Rightarrow 1 \equiv A(x-2) + B(x+1)$$

True for all x.

Put x = -1, then $1 = A(-3) \implies A = -\frac{1}{3}$.

Put x = 2, then $1 = B(3) \Rightarrow B = \frac{1}{3}$.

27(b)

$$3x + 2 \equiv A(x - 1) + B(x - 2)$$

True for all x.

Put x = 1, then $5 = B(-1) \Rightarrow B = -5$.

Put x = 2, then $8 = A(1) \Rightarrow A = 8$.

27(c)

$$\frac{5x+1}{\sqrt{(x^2+x+1)}} \equiv \frac{A(2x+1)+B}{\sqrt{(x^2+x+1)}} \\ \Rightarrow 5x+1 \equiv A(2x+1)+B$$

True for all x.

Put $x = -\frac{1}{2}$, then $-\frac{3}{2} = B$.

Put x = 0, then $1 = A + B \Rightarrow A = \frac{5}{2}$.

28

$$2x^2 - 5x + 12 \equiv A(x-1)^2 + B(x-1) + C$$

True for all x.

Put x = 1, then C = 9.

Put x = 0, then $12 = A - B + C \Rightarrow A - B = 3$.

Put x = -1, then $19 = 4A - 2B + C \Rightarrow 2A - B = 5$.

 $\Rightarrow A = 2 \text{ and } B = -1.$

1.3.7 Exercises

29(a)

$$\sum_{k=0}^{4} a_k = a_0 + a_1 + a_2 + a_3 + a_4$$
$$= 2 - 1 - 4 + 5 + 3$$
$$= 5$$

29(b)

$$\sum_{i=1}^{3} a_i = a_1 + a_2 + a_3$$
$$= -1 + 5 - 4$$
$$= 0$$

29(c)

$$\sum_{k=1}^{2} a_k b_k = a_1 b_1 + a_2 b_2$$
$$= (-1)(1) + (-4)(2)$$
$$= -9$$

29(d)

$$\sum_{j=0}^{4} b_j^2 = (1)^2 + (1)^2 + (2)^2 + (-1)^2 + (2)^2$$

$$= 11$$

29(e)

$$\prod_{k=1}^{3} a_k = a_1 a_2 a_3$$

$$= (-1)(-4)(5)$$

$$= 20$$

29(f)

$$\prod_{k=1}^{4} b_k = b_1 b_2 b_3 b_4$$

$$= (1)(2)(-1)(2)$$

$$= -4$$

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

= 120

30(b)

$$3!/4! = 3 \cdot 2 \cdot 1/(4 \cdot 3 \cdot 2 \cdot 1)$$

= $\frac{1}{4}$

30(c)

$$7!/(3! \times 4!) = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1/(3 \cdot 2 \cdot 1 \times 4 \cdot 3 \cdot 2 \cdot 1)$$

= $7 \cdot 5 = 35$

30(d)

$$\binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10$$

30(e)

$$\binom{9}{3} = \frac{9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3} = 84$$

30(f)

$$\binom{8}{4} = \frac{8 \cdot 7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4} = 70$$

■ 31(a)

$$(x-3)^4 = x^4 + 4x^3(-3) + 6x^2(-3)^2 + 4x(-3)^3 + (-3)^4$$

= $x^4 - 12x^3 + 54x^2 - 108x + 81$

31(b)

$$(x + \frac{1}{2})^3 = x^3 + 3x^2(\frac{1}{2}) + 3x(\frac{1}{2})^2 + (\frac{1}{2})^3$$
$$= x^3 + \frac{3}{2}x^2 + \frac{3}{4}x + \frac{1}{8}$$

31(c)

$$(2x+3)^5 = (2x)^5 + 5(2x)^4(3) + 10(2x)^3(3)^2 + 10(2x)^2(3)^3 + 5(2x)^1(3)^4 + (3)^5$$

= $32x^5 + 240x^4 + 720x^3 + 1080x^2 + 810x + 243$

31(d)

$$(3x + 2y)^4 = (3x)^4 + 4(3x)^3(2y) + 6(3x)^2(2y)^2 + 4(3x)(2y)^3 + (2y)^4$$

= $81x^4 + 216x^3y + 216x^2y^2 + 96xy^3 + 16y^4$

1.4.4 Exercises

■ 32(a) The line with gradient m through (x_0, y_0) has equation $(y - y_0) = m(x - x_0)$. In this case the equation is

$$y-1 = \frac{3}{2}(x-2)$$
 equivalently
$$y = \frac{3}{2}x-2$$

- **32(b)** The line has equation y-3=-2(x+2), equivalently y=-2x-1.
- **32(c)** The gradient is $m = \frac{7-2}{3-1} = \frac{5}{2}$ so the line has equation

$$y-2 = \frac{5}{2}(x-1)$$

or $y = \frac{5}{2}x - \frac{1}{2}$

32(d) The gradient is $m = \frac{3-0}{0-5} = -\frac{3}{5}$ so the equation of the line is

$$y = -\frac{3}{5}(x - 5)$$
$$y = -\frac{3}{5}x + 3$$

32(e) The required line has the same gradient as the line 3y - x = 5 (equivalently $y = \frac{x}{3} + \frac{5}{3}$); this is $\frac{1}{3}$. Thus our line has equation

$$y - 1 = \frac{1}{3}(x - 1)$$
$$y = \frac{1}{3}x + \frac{2}{3}$$

32(f) Lines perpendicular to 3y - x = 5 have gradient $-\frac{1}{1/3} = -3$. The required line has equation

$$y - 1 = -3(x - 1)$$
$$y = -3x + 4$$

■ 33 The equation of the circle centre (x_0, y_0) , radius r, is

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

so the equation of this circle is

$$(x-1)^2 + (y-2)^2 = 5^2$$

34 Completing the square in x and then in y

$$x^2 + y^2 + 4x - 6y = 3$$

may be written as

$$(x+2)^2 + (y-3)^2 = 16$$

the equation of a circle centre (-2, 3), radius 4.

■ 35 The radius, r, of the circle is the distance between (-2, 3) and (1, -1) so

$$r^{2} = (-1 - 3)^{2} + (1 - -2)^{2}$$
$$= 4^{2} + 3^{2}$$
$$= 5^{2}$$

So the equation of the circle is

$$(x+2)^2 + (y-3)^2 = 25$$

which is the same as $x^2 + y^2 + 4x - 6y = 12$.

■ 36 The equation of the circle, C, is $(x - x_0)^2 + (y - y_0)^2 = r^2$. We are required to find x_0 , y_0 and r.

(1,0) lies on
$$C$$
 so $(1-x_0)^2 + y_0^2 = r^2$ (1)

(3,4) lies on
$$C$$
 so $(3-x_0)^2 + (4-y_0)^2 = r^2$ (2)

(5,0) lies on
$$X$$
 so $(5-x_0)^2 + y_0^2 = r^2$ (3)

Subtracting (3) from (1) gives $(1 - x_0)^2 - (5 - x_0)^2 = 0$ so $(6 - 2x_0) \times -4 = 0$ and so $x_0 = 3$.

Now (1) and (2) become $y_0^2 = r^2 - 4$ and $(4 - y_0)^2 = r^2$ respectively. Therefore

$$(4 - y_0)^2 = y_0^2 + 4$$
$$\Rightarrow y_0 = \frac{3}{2}$$

Now (2) becomes $(4 - \frac{3}{2})^2 = r^2$ so $r = \frac{5}{2}$. Having obtained x_0 , y_0 , r we can write down the equation of the circle. It is

$$(x-3)^2 + (y-\frac{3}{2})^2 = \frac{25}{4}$$

Multiplying out this is

$$x^2 + y^2 - 6x - 3y + 5 = 0$$

■ 37 Let tangent have equation y = m(x-1) + 2 so that it passes through (1,2). This line cuts the circle $x^2 + y^2 - 4x - 1 = 0$ where

$$x^{2} + [m(x-1) + 2]^{2} - 4x - 1 = 0$$

Simplifying this gives

$$(m^2 + 1)x^2 + (2m - 2m^2 - 4)x + m^2 - 2m + 3 = 0$$

This has two distinct roots except where the line is a tangent where there is a repeated root at x = 1:

$$x^{2} + [mx + (2 - m)]^{2} - 4x - 1 = 0$$

$$x^{2} + m^{2}x^{2} + 2mx(2 - m) + (2 - m)^{2} - 4x - 1 = 0$$

$$x^{2}(m^{2} + 1) + 2x(2m - m^{2} - 2) + 3 - 4m + m^{2} = 0$$

$$m^{2} + 1 4m - 2m^{2} - 4 3 - 4m + m^{2}$$

$$0 m^{2} + 1 4m - m^{2} - 3$$

$$m^{2} + 1 4m - m^{2} - 3 0$$

$$0 m^{2} + 1$$

$$m^{2} + 1 4m - 2 m = \frac{1}{2}$$

$$y = \frac{1}{2}(x - 1) + 2 = \frac{1}{2}(x + 3)$$

■ 38 Let x be the distance (in cm) along one of the wires from the point of intersection of the wires; y be the distance from the intersection along the other wire. If the midpoint of the rod has coordinates (x, y) then, since it is the midpoint, the end on the x-axis must be at 2x and the end on the y-axis at 2y. Since the rod has length 50 cm

$$(2x)^2 + (2y)^2 = (50)^2$$

so $x^2 + y^2 = (25)^2$

1.4.6 Exercises

39

$$y^2 = 4ax$$
 has focus at $x = a$ and directrix at $x = -a$
 $3y^2 = 8x \implies y^2 = \frac{8}{3}x$ and $a = \frac{2}{3}$

Focus is at $(\frac{2}{3}, 0)$, directrix is $x = -\frac{2}{3}$.

$$x = \frac{2}{3}$$
 \Rightarrow $y^2 = \frac{16}{19}$ \Rightarrow $y = \pm \frac{4}{3}$

Hence latus rectum has length $\frac{8}{3}$.

40

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ has } b < a$$

so in this case the role of x and y is interchanged since

$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

With b < a the foci are at $(\pm ae, 0)$, $e^2 = 1 - \frac{b^2}{a^2}$, directrices $x = \pm a/e$.

Here a = 5, b = 4, e = 3/5 and the foci are a^{-} (0, ± 3); the directrices are $y = \pm 25/3$, the major axis is 10 and the minor axis 8.

■ 41 For the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, the foci are $(\pm ae, 0)$, the eccentricity $e = 1 + \frac{b^2}{a^2}$, the directrices are $x = \pm a/e$. Here $\frac{x^2}{16} - \frac{y^2}{9} = 1$, so that the foci are at $(\pm 5, 0)$ with eccentricity $e = \frac{5}{4}$.

The vertices occur where y = 0, giving $x = \pm 4$ and the asymptotes are given by

$$\frac{x^2}{16} - \frac{y^2}{9} = 0$$
, i.e. $y = \pm \frac{3}{4}x$

1.5.4 Exercises

42

$$110110.101_2 = 2^5 + 2^4 + 2^2 + 2^1 + 2^{-1} + 2^{-3}$$

= 54.625_{10}

43

$$16\ 321 = 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^{9} + 2^{8} + 2^{7} + 2^{6} + 2^{0}$$

$$= 11111111000001_{2}$$

$$16\ 321 = 3 \times 8^{4} + 7 \times 8^{3} + 7 \times 8^{2} + 8^{0}$$

$$= 37701_{8}$$

To convert from binary to octal: take the first three entries immediately to the right and include the 2^0 term in the binary expansion; this may be considered as a three-digit binary number; convert this number into octal; the resulting octal number is the 8^0 term of the octal expansion. Now do the same with the next three digits of the binary expansion to get the 8^1 term of the octal expansion, and so on.

$$101_2 = 5_8$$
, $100_2 = 4_8$, $011_2 = 3_8$, and $1_2 = 1_8$ so $[1011100101101_2 = 13455_8]$

44

$$\begin{aligned} 30.6 &= 2^4 + 2^3 + 2^2 + 2^1 + 2^{-1} + 2^{-4} + 2^{-5} + 2^{-8} + 2^{-9} + 2^{-12} + 2^{-13} \\ &= 11110.1001100110011 \dots _2 \\ \\ 30.6 &= 3 \times 8 + 6 \times 8^0 + 4 \times 8^{-1} + 6 \times 8^{-2} + 3 \times 8^{-3} + 8^{-4} + 4 \times 8^{-5} \\ &\quad + 6 \times 8^{-6} + 3 \times 8^{-7} + 8^{-8} + \dots \\ &= 36.46314631 \dots _8 \end{aligned}$$

The rule works in this case as well: $100_2 = 4_8$, $110_2 = 6_8$, $011_2 = 3_8$ and $001_2 = 1_8$.

■ 45(a)

$$100011.011_2 + 1011.001_2 - 101110.100_2$$

45(b)

$$\begin{array}{r}
111.10011_{2} \\
\times 10.111_{2} \\
\hline
0.11110011 \\
1.1110011 \\
11.110011 \\
+ 1111.0011 \\
\hline
10101.11010101_{2}
\end{array}$$

■ **46(a)** 3 dp, 6 sf.

■ 47 The absolute error bound for the lengths h = 1, b = 2 is 0.005. The error table for the calculation of $\sqrt{h^2 + b^2}$ is as follows:

Label	Value	Absolute error bound	Relative error bound
h	1	0.005	0.005
b	1	0.005	0.0025
h^2	1	0.01	0.01
b^2	4	0.02	0.005
$h^2 + b^2$	5	0.03	0.006
$\sqrt{h^2+b^2}$	$2.236\ 068$	0.007	0.003

The absolute error bound for $\sqrt{h^2 + b^2}$ is 0.007 so the value 2.236 07 is not sensible. The hypotenuse has length 2.236 \pm 0.007. The angle of the triangle is stated as 90°; this is only known up to the accuracy of the angle-measuring tool used. This may be the cause of further error.

■ 48(a) The absolute error bound is $\mathcal{E}_a = \frac{5}{60}$ min. The relative error bound is $r_a = \frac{\mathcal{E}_a}{a} = \frac{1}{420}$.

48(b) Absolute error
$$\varepsilon_a = 35 \times \frac{4}{100}$$
 min = $\frac{7}{5}$ min. Relative error $r_a = \frac{7}{5} \times \frac{1}{35} = \frac{1}{25}$

48(c) Absolute error
$$\varepsilon_a = 0.005$$
 Relative error $r_a = \frac{0.005}{0.58} = \frac{1}{116}$

49 Absolute error = $12.9576 \times 0.0003 = 0.0039$.

Let x be the exact value. We know that

$$12.9576 - 0.0039 \le x \le 12.9576 + 0.0039$$

 $12.9537 \le x \le 12.9615$

So we can only state x to 3 significant figures: x = 12.9.

■ 50(a)

Label	Value	Absolute error bound	Relative error bound
\overline{a}	1.316	5×10^{-4}	3.8×10^{-4}
b	5.713	5×10^{-4}	8.8×10^{-5}
c	8.010	5×10^{-4}	6.2×10^{-5}
a - b + c	3.613	0.0015	4.2×10^{-4}

Correctly rounded a - b + c = 3.61

50(b)

Label	Value	Absolute error bound	Relative error bound
\overline{a}	2.51	0.005	2×10^{-3}
b	1.01	0.005	5×10^{-3}
ab	2.5351	0.018	7×10^{-3}

Correctly rounded ab = 2.5

50(c)

Label	Value	$Absolute\ error\ bound$	Relative error bound
\overline{a}	19.61	0.005	2.55×10^{-4}
b	21.53	0.005	2.32×10^{-4}
c	18.67	0.005	2.68×10^{-4}
a + b - c	22.47	0.015	6.67×10^{-4}

Correctly rounded a + b - c = 22.5

51

Label	Value	Absolute error bound	Relative error bound
\overline{a}	12.42	0.005	4.03×10^{-4}
b	5.675	0.0005	8.81×10^{-5}
c	15.63	0.005	3.20×10^{-4}
$\frac{ab}{c}$	4.5095	0.0037	8.11×10^{-4}

 $\frac{ab}{c} = 4.5095 \pm 0.0037$

Correctly rounded this is 4.51.

1.22 MEM Exercises 1.5.4

52

Label	Value	Absolute error bound	Relative error bound
\overline{a}	4.99	0.005	0.001
b	5.01	0.005	0.001
a + b	10	0.01	0.001
a-b	-0.02	0.01	0.5
ab	24.9999	0.05	0.002
$\frac{a}{b}$	0.996	0.002	0.002

53

Label	Value	Absolute error bound	Relative error bound
\overline{a}	3.251	0.0005	1.5×10^{-4}
b	3.115	0.0005	1.6×10^{-4}
a-b	0.136	0.001	7.4×10^{-3}
c	0.112	0.0005	4.5×10^{-3}
$\frac{a-b}{c}$	$1.214\ 29$	0.015	1.2×10^{-2}
d	9.21	0.005	5.4×10^{-4}
$d + \frac{a-b}{c}$	$10.424\ 29$	0.02	1.9×10^{-3}

So $9.21 + \frac{3.251 - 3.115}{0.112} = 10.4243 \pm 0.02$

Correctly rounded this is 10.4.

54

Label	Value	$Absolute\ error\ bound$	Relative error bound
u	1.135	0.0005	4.4×10^{-4}
v	2.332	0.0005	2.1×10^{-4}
uv	$2.646\ 82$	1.7×10^{-3}	6.5×10^{-4}
u + v	3.467	0.001	2.9×10^{-4}
$\frac{uv}{u+v}$	$0.763\ 43$	7.2×10^{-4}	9.4×10^{-4}

 $\frac{uv}{u+v} = 0.763 \ 43 \pm 0.000 \ 72$

Correctly rounded this is 0.76.

■ 55(a)

Term	Value (4 dp)	Error bound
1	1.0000	0.0000
-1.65	-1.6500	0.0050
$+\frac{1}{2}(1.65)^2$	+1.3612	0.0082 (i)
$-\frac{1}{6}(1.65)^3$	-0.7487	0.0068 (ii)
$+\frac{1}{24}(1.65)^4$	+0.3088	0.0037 (iii)
E	0.2713	0.0237

so $0.2476 \le E \le 0.2950$.

- (i) Error $\leq \frac{1}{2} [1.65 \times 0.0050 + 1.65 \times 0.0050]$ $(\varepsilon_{ab} = a\varepsilon_b + b\varepsilon_a)$
- (ii) Error $\leq \frac{1}{3} \left[\frac{1}{2} (1.65)^2 \times 0.0050 + 1.65 \times 0.0050 + 1.65 \times 0.0082 \right]$ $\left(\frac{1}{6} (1.65)^3 = \frac{1}{3} \times \frac{1}{2} (1.65)^2 \times 1.65 \right)$
- (iii) Error $\leq \frac{1}{4} \left[\frac{1}{6} (1.65)^3 \times 0.0050 + 1.65 \times 0.0050 + 1.65 \times 0.0068 \right]$ $\left(\frac{1}{24} (1.65)^4 = \frac{1}{4} \times \frac{1}{6} (1.65)^3 \times 1.65 \right)$

We can also obtain these by arguing that if ε is the error in 1.65, then $(1.65 + \varepsilon)^n = 1.65^n + n(1.65)^n \varepsilon + \text{terms}$ in ε^2 , ε^3 , etc. Ignoring these latter terms, error in $(1.65)^n$ is bounded by $n(1.65)^n 0.005$.

55(b)

Term	Value (4 dp)	Error bound
$-\frac{1}{6} + \frac{1}{24} \cdot 1.65 = t_1$	-0.0979	0.0002 (i)
$1.65 \times t_1 = t_2$	-1.1615	0.0008 (ii)
$\frac{1}{2} + t_2 = t_3$	+0.3385	0.0008 (iii)
$1.65 \times t_3 = t_4$	+0.5585	0.0030 (iv)
$-1 + t_4 = t_5$	+0.4415	0.0030 (v)
$1.65 \times t_5 = t_6$	-0.7285	0.0072 (vi)
$1 + t_6 = E$	0.2715	0.0072 (vii)

so $0.2643 \le E \le 0.2787$.

- (i) Error \leq error in 0.1667 + $\frac{1}{24}$ (error in 1.65) \simeq 0.000 24, round to 0.0002
- (ii) Error $\leq 1.65 \times 0.0002 + t_1 \times 0.0050$ (iv), (vi) are similar
- (iii) Error = error in t_2 (v), (vii) are similar

It is obvious that (b) gives us a better guarantee of accuracy.

1.5.6 Exercises

56

```
 \begin{aligned} &(((10^1(0.1000) + 10^1(0.1000)) + 10^0(0.5000)) + 10^0(0.1667)) + 10^{-1}(0.4167) \\ &= ((10^1(0.2000) + 10^0(0.5000)) + 10^0(0.1667)) + 10^{-1}(0.4167) \\ &= (10^1(0.2500) + 10^0(0.1667)) + 10^{-1}(0.4167) \\ &= (10^1(0.2500) + 10^1(0.016 67)) + 10^{-1}(0.4167) \\ &= 10^1(0.2667) + 10^{-1}(0.4167) \\ &= 10^1(0.2667) + 10^1(0.004 167) \\ &= 10^1(0.2709) \end{aligned}   \begin{aligned} &(((10^{-1}(0.4167) + 10^0(0.1667)) + 10^0(0.5000)) + 10^1(0.1000)) + 10^1(0.1000) \\ &= ((10^0(0.2084) + 10^0(0.5000)) + 10^1(0.1000)) + 10^1(0.1000) \\ &= (10^0(0.7084) + 10^1(0.1000)) + 10^1(0.1000) \\ &= 10^1(0.1708) + 10^1(0.1000) \\ &= 10^1(0.2708) \end{aligned}
```

The first method is less accurate: adding the large numbers first means that the small numbers will be swamped.

57

$$10^{-2}(0.3251) \times 10^{-5}(0.2011) = 10^{-7}(0.065 \ 378)$$

$$= 10^{-8}(0.653 \ 78)$$

$$= 10^{-8}(0.6538)$$

$$10^{-1}(0.2168) \div 10^{2}(0.3211) = 10^{-3}(0.675 \ 179)$$

$$= 10^{-3}(0.6752)$$

58

$$\begin{aligned} &10^4(0.1000) + 10^2(0.1234) = 10^4(0.101\ 234) \rightarrow 10^4(0.1012) \\ &10^4(0.1012) - 10^4(0.1013) = 10^4(-0.0001) \rightarrow 10^1(-0.1000) \end{aligned}$$

The exact answer is

$$1000 + 12.34 - 1013 = -0.66$$

and so the relative error is, in absolute value,

$$(1 - 0.66)/0.66 = 0.34/0.66 \approx \frac{1}{2}$$
 or 50%

This large value is due to *cancellation* – the error introduced by this addition is amplified by the subtraction of two nearly equal numbers.

1.7 Review Exercises

■ 1(a)

$$Q = \frac{\sqrt{H}}{K} \sqrt{\frac{A^2 D^2}{A^2 + D^2}}$$

$$\Rightarrow Q^2 = \frac{H}{K^2} \cdot \frac{A^2 D^2}{A^2 + D^2}$$

$$\Rightarrow Q^2 K^2 (A^2 + D^2) = HA^2 D^2$$

$$\Rightarrow A^2 (Q^2 K^2 - HD^2) = -Q^2 K^2 D^2$$

$$\Rightarrow A = \frac{\pm QKD}{\sqrt{(HD^2 - Q^2 K^2)}}$$

1(b)

$$\frac{1}{x+2} - \frac{2}{x} = \frac{3}{x-1}$$

$$\Rightarrow x(x-1) - 2(x+2)(x-1) = 3(x+2)x$$

$$\Rightarrow x^2 - x - 2x^2 - 2x + 4 = 3x^2 + 6x$$

$$\Rightarrow 4x^2 + 9x - 4 = 0$$

$$\Rightarrow x = [-9 \pm \sqrt{(81+64)}]/8$$

$$= (-9 \pm \sqrt{145})/8$$

■ 2(a)

$$ax - 2x - a + 2 = (a - 2)x - (a - 2)$$

= $(a - 2)(x - 1)$

2(b)

$$a^{2} - b^{2} + 2bc - c^{2} = a^{2} - (b - c)^{2}$$

= $(a - b + c)(a + b - c)$

2(c)

$$4k^{2} + 4kl + l^{2} - 9m^{2} = (2k + l)^{2} - 9m^{2}$$
$$= (2k + l - 3m)(2k + l + 3m)$$

2(d)

$$p^2 - 3pq + 2q^2 = (p - 2q)(p - q)$$

2(e)

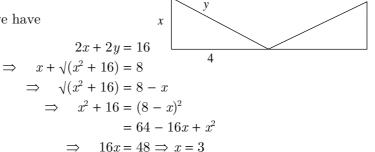
$$l^{2} + lm + ln + mm = l(l + m) + n(l + m)$$

= $(l + n)(l + m)$

 \blacksquare 3(a) Let x cm be distance of mass below peg, then by Pythagoras' theorem

$$y^2 = x^2 + 4^2$$

Since total length is 16 cm we have



Hence mass rises by 1 cm.

3(b) Shaded area is 5x(2x-5)-40 square units. Hence

$$10x^{2} - 25x - 40 = 10$$

$$\Rightarrow 2x^{2} - 5x - 10 = 0$$

$$\Rightarrow x = \frac{5 + \sqrt{(25 + 80)}}{4} \quad \text{since } x \text{ is positive}$$

$$= 3.812$$

■ 4(a)

$$Z^{2} = R^{2} + \left(2\pi nL - \frac{1}{2\pi nC}\right)^{2}$$

$$\Rightarrow 2\pi nL - \frac{1}{2\pi nC} = \pm\sqrt{(Z^{2} - R^{2})}$$

$$\Rightarrow 2\pi nL = \frac{1}{2\pi nC} \pm\sqrt{(Z^{2} - R^{2})}$$

$$\Rightarrow L = \frac{1}{4\pi^{2}n^{2}C} \pm \frac{\sqrt{(Z^{2} - R^{2})}}{2\pi n}$$

4(b) $n = 50, R = 15, C = 10^{-4}$ gives

$$L = \frac{10^4}{10^4 \pi^2} \pm \frac{\sqrt{(Z^2 - 225)}}{100\pi}$$

$$Z = 20 \Rightarrow L = \frac{1}{\pi^2} \pm \frac{\sqrt{175}}{100\pi}$$

$$= \frac{1}{\pi^2} \pm \frac{\sqrt{7}}{20\pi}$$

$$= \frac{20 \pm \pi \sqrt{7}}{20\pi^2}$$

$$= 0.1434 \text{ or } 0.0592$$

$$Z = 100 \Rightarrow L = \frac{1}{\pi^2} \pm \frac{\sqrt{9775}}{100\pi}$$
$$= \frac{1}{\pi^2} \pm \frac{\sqrt{391}}{20\pi}$$

Since L > 0, we have

$$L = \frac{20 + \pi \sqrt{391}}{20\pi^2}$$
$$= 0.4160$$

$$(3\sqrt{2} - 2\sqrt{3})^2 = 9 \times 2 - 2 \times 6 \times \sqrt{2}\sqrt{3} + 4 \times 3$$
$$= 30 - 12\sqrt{6}$$

$$(\sqrt{5} + 7\sqrt{3})(2\sqrt{5} - 3\sqrt{3}) = 2 \times 5 - 3\sqrt{3}\sqrt{5} + 14\sqrt{3}\sqrt{5} - 21 \times 3$$
$$= -53 + 11\sqrt{15}$$

$$\frac{4+3\sqrt{2}}{5+\sqrt{2}} = \frac{4+3\sqrt{2}}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}}$$
$$= \frac{14+11\sqrt{2}}{23}$$

$$\frac{\sqrt{3} + \sqrt{2}}{2 - \sqrt{3}} = \frac{\sqrt{3} + \sqrt{2}}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$$
$$= \frac{2\sqrt{3} + 2\sqrt{2} + 3 + \sqrt{6}}{1}$$
$$= 3 + 2\sqrt{2} + 2\sqrt{3} + \sqrt{6}$$

$$\frac{1}{1+\sqrt{2}-\sqrt{3}} = \frac{1}{1+\sqrt{2}-\sqrt{3}} \times \frac{1-\sqrt{2}+\sqrt{3}}{1-\sqrt{2}+\sqrt{3}}$$

$$= \frac{1-\sqrt{2}+\sqrt{3}}{-4+2\sqrt{6}}$$

$$= \frac{(1-\sqrt{2}+\sqrt{3})(-4-2\sqrt{6})}{-8}$$

$$= \frac{-4-2\sqrt{6}+4\sqrt{2}+4\sqrt{3}-4\sqrt{3}-6\sqrt{2}}{-8}$$

$$= \frac{1}{2} + \frac{1}{4}\sqrt{2} + \frac{1}{4}\sqrt{6}$$

6

$$\sqrt{11 + 2\sqrt{30}} = \sqrt{m} + \sqrt{n}$$

$$\Rightarrow 11 + 2\sqrt{30} = m + n + 2\sqrt{mn}$$

$$\Rightarrow m + n = 11$$

$$mn = 30$$

So m = 5, n = 6.

7

$$\sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{n+1 + \sqrt{(n+1)n} - \sqrt{(n+1)n} - n}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \dots \cdot (1)$$

Now,
$$\frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{n-1}}$$

so $\frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} < \frac{1}{\sqrt{n} + \sqrt{n-1}}$
and using the identity (1)

$$\sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} - \sqrt{n-1}$$

as required.

Using the above

$$2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}} < 2(\sqrt{n} - \sqrt{n-1})$$
so
$$2\sum_{n=1}^{10000} (\sqrt{n+1} - \sqrt{n}) < \sum_{n=1}^{10000} \frac{1}{\sqrt{n}} < 2\sum_{n=1}^{10000} (\sqrt{n} - \sqrt{n-1})$$

However,

$$\sum_{n=1}^{10000} (\sqrt{n+1} - \sqrt{n}) = \sqrt{10001} - 1 \quad \text{since adjacent terms cancel}$$
and
$$\sum_{n=1}^{10000} (\sqrt{n} - \sqrt{n-1}) = \sqrt{10000}$$
so
$$198.01 < \sum_{1}^{1000} \frac{1}{\sqrt{n}} < 200$$

■ 8(a)

$$\{x: 4x^2 - 3 < 4x\} = \{x: 4x^2 - 4x - 3 < 0\}$$

$$4x^2 - 4x - 3 < 0$$

$$\Rightarrow (2x - 3)(2x + 1) < 0$$
so $-\frac{1}{2} < x < \frac{3}{2}$

This is the interval $\left(-\frac{1}{2}, \frac{3}{2}\right)$.

8(b) Case 1: (x+2)(x-1) > 0 (i.e. x < -2 or x > 1) multiplying by (x+2)(x-1) gives

$$(x-1) > 2(x+2)$$
so $x < -5$

Case 2: (x+2)(x-1) < 0 (i.e. -2 < x < 1)

we get
$$(x-1) < 2(x+2)$$

so $x > -5$

Since -2 < x < 1 the solution in this case is -2 < x < 1.

Therefore the complete solution is

$$(-\infty, -5) \cup (-2, 1)$$

8(c)

$$|x+1| < 2$$

 $\Rightarrow -1 - 2 < x < -1 + 2$
so $-3 < x < 1$

The solution set is (-3, 1).

8(d) Case 1: $x \ge -1$

$$x + 1 < 1 + \frac{1}{2}x$$

$$\Rightarrow x < 0$$

so in this case the solution is $-1 \le x < 0$.

Case 2: x < -1

$$-x - 1 < 1 + \frac{1}{2}x$$

$$\Rightarrow x > -\frac{4}{3}$$
so
$$\frac{4}{3} < x < -1$$

Hence the complete solution set is $\left(-\frac{4}{3}, 0\right)$.

■ 9 $L \ge p$ where p is the perimeter of the circle of area A. For the circle

$$2\pi r = p$$

$$\pi r^2 = A$$
So
$$p^2 = 4\pi A$$

Since $L \ge p$, $L^2 \ge p^2$ and so $L^2 \ge 4\pi A$ as required.

A square of area A has perimeter $L = 4\sqrt{A}$

$$16A > 4\pi A$$
 since $\pi < 4$

and the inequality holds.

A semicircle of area A has perimeter L where

$$L^{2} = \frac{2}{\pi} (2 + \pi)^{2} A$$
 but
$$\frac{2}{\pi} (2 + \pi)^{2} \approx 16.8 > 4\pi$$

so again the inequality holds.

$$10 \left(\frac{x+y}{2}\right)^2 \ge xy$$

Substituting $x = \frac{1}{2}(a+b)$ and $y = \frac{1}{2}(c+d)$ gives

$$\left(\frac{a+b+c+d}{4}\right)^2 \ge \frac{1}{4} \left(a+b\right)\left(c+d\right)$$

Squaring both sides (remembering that a, b, c and d >) gives

$$\left(\frac{a+b}{2}\right)^2 \left(\frac{c+d}{2}\right)^2 \le \left(\frac{a+b+c+d}{4}\right)^4$$

Now
$$\left(\frac{a+b}{2}\right)^2 \ge ab$$
 and $\left(\frac{c+d}{2}\right)^2 \ge cd$

so that
$$abcd \le \left(\frac{a+b}{2}\right)^2 \left(\frac{c+d}{2}\right)^2$$

 $\le \left(\frac{a+b+c+d}{4}\right)^4$

Hence
$$\frac{a+b+c+d}{4} \ge \sqrt[4]{(abcd)}$$

■ 11
$$a + c < b + c$$
 since $a < b$

so
$$\frac{a+c}{b+c}$$
 < 1 as $b+c>0$

also a < b

$$\Rightarrow$$
 $ac < bc$ since $c > 0$

$$\Rightarrow ab + ac < ab + bc$$

therefore

$$a(b+c) < b(a+c)$$

$$\frac{a}{b} < \frac{a+b}{b+c} \quad \text{since } b > 0, \ b+c > 0$$

Combining these two gives

$$\frac{a}{b} < \frac{a+b}{b+c} < 1$$

If a > b and b > 0

then
$$a+c>b+c$$
 so $\frac{a+c}{b+c}>1$ as $b+c>0$.

Also ba + bc < ab + ac

SO
$$\frac{a+c}{b+c} < \frac{a}{b}$$

and therefore $\frac{a}{b} > \frac{a+c}{b+c} > 1$

$$\begin{split} \binom{n}{n_1} \binom{n_2 + n_3}{n_2} &= \frac{n!}{n_1! (n - n_1)!} \cdot \frac{(n_2 + n_3)!}{n_2! (n_2 + n_3 - n_2)!} \\ &= \frac{n!}{n_1! (n_2 + n_3)!} \cdot \frac{(n_2 + n_3)!}{n_2! n_3!} \\ &= \frac{n!}{n_1! n_2! n_3!} \end{split}$$

12(b)

(i)

$$\begin{split} \left(1 - \frac{x}{2}\right)^5 &= \left(1 - \frac{5}{1} \cdot \frac{x}{2} + \frac{5 \cdot 4}{1 \cdot 2} \cdot \frac{x^2}{4} - \frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} \cdot \frac{x^3}{8} + \frac{5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4} \cdot \frac{x^4}{16} - \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \cdot \frac{x^5}{32}\right) \\ &= 1 - \frac{5}{2}x + \frac{5}{2}x^2 - \frac{5}{4}x^3 + \frac{5}{16}x^4 - \frac{1}{32}x^5 \end{split}$$

$$(3 - 2x)^{6} = 3^{6} - 6 \cdot 3^{5} \cdot 2x + 15 \cdot 3^{4} \cdot 2^{2}x^{2} - 20 \cdot 3^{3} \cdot 2^{3}x^{3}$$

$$+ 15 \cdot 3^{2} \cdot 2^{4} \cdot x^{4} - 6 \cdot 3 \cdot 2^{5}x^{5} + 2^{6}x^{6}$$

$$= 729 - 2916x + 4860x^{2} - 4320x^{3}$$

$$+ 2160x^{4} - 576x^{5} + 64x^{6}$$

■ 13(a)

$$\sum_{n=-2}^{3} [n^{n+1} + 3(-1)^n] = [(-2)^{-1} + 3(-1)^2] + [(-1)^0 + 3(-1)^{-1}] + [(0)^1 + 3(-1)^0]$$

$$+ [(1)^2 + 3(-1)^1] + [(2)^3 + 3(-1)^2] + [(3)^4 + 3(-1)^3]$$

$$= [-\frac{1}{2} + 3] + [1 - 3] + [0 + 3] + [1 - 3] + [8 + 3] + [81 - 3]$$

$$= -\frac{1}{2} + 1 + 1 + 8 + 81 = 90.5$$

13(b) Number of dots inside third L shape is 9. A further seven dots are needed to extend to a 4×4 square.

$$\sum_{r=1}^{n} P_r = \sum_{r=1}^{n} (2r - 1) = 2\sum_{r=1}^{n} r - \sum_{r=1}^{n} 1$$

$$= 2 \cdot \frac{n}{2} (n + 1) - n$$

$$= n^2 + n - n$$

$$= n^2$$

■ 14(a)

$$\frac{y+11}{5+11} = \frac{x+6}{2+6}$$

$$\Rightarrow y+11 = 2(x+6)$$

$$\Rightarrow y = 2x+1$$

14(b)

$$y = \frac{1}{3}(x - 4) - 1$$

$$\Rightarrow y = \frac{1}{3}x - \frac{7}{3}$$

14(c)

$$y = \frac{1}{3}x - \frac{7}{3}$$

 $x = 0 \Rightarrow y = -\frac{7}{3}$ (required intercept)
 $y = 2x + 1$ has slope 2 (required slope)

Hence line is $y = 2x - \frac{7}{3}$.

■ 15 Since circle touches y-axis at (0, 3), its equation has the form

$$(x-a)^2 + (y-3)^2 = a^2$$

where a is a number.

Since circle passes through (1, 0), we have

$$(1-a)^2 + 9 = a^2$$

and hence a = 5.

Since circle passes through (1, 0), we have

$$(1-a)^2 + 9 = a^2$$

and hence a=5.

So equation of circle is

$$(x-5)^2 + (y-3)^2 = 25$$

■ 16(a)

$$x^{2} + y^{2} + 2x - 4y + 1 = 0$$

$$\Rightarrow (x+1)^{2} + (y-2)^{2} + 1 = 1 + 4$$

$$\Rightarrow (x+1)^{2} + (y-2)^{2} = 4$$
Centre (-1, 2), radius 2

$$4x^{2} - 4x + 4y^{2} + 12y + 9 = 0$$

$$\Rightarrow x^{2} - x + y^{2} + 3y + \frac{9}{4} = 0$$

$$\Rightarrow (x - \frac{1}{2})^{2} + (y + \frac{3}{2})^{2} + \frac{9}{4} = \frac{1}{4} + \frac{9}{4}$$

$$\Rightarrow (x - \frac{1}{2})^{2} + (y + \frac{3}{2})^{2} = \frac{1}{4}$$
Centre $(\frac{1}{2}, -\frac{3}{2})$, radius $\frac{1}{2}$

16(c)

$$9x^{2} + 6x + 9y^{2} - 6y = 25$$

$$\Rightarrow x^{2} + \frac{2}{3}x + y^{2} - \frac{2}{3}y = \frac{25}{9}$$

$$\Rightarrow (x + \frac{1}{3})^{2} + (y - \frac{1}{3})^{2} = \frac{25}{9} + \frac{1}{9} + \frac{1}{9}$$

$$\Rightarrow (x + \frac{1}{3})^{2} + (y - \frac{1}{3})^{2} = \frac{27}{9}$$
Centre $(-\frac{1}{3}, \frac{1}{3})$, radius $\sqrt{3}$

■ 17(i)

$$y^{2} = 8x + 4y - 12$$

$$\Rightarrow y^{2} - 4y = 8x - 12$$

$$(y - 2)^{2} = 8x - 12 + 4$$

$$(y - 2)^{2} = 8(x - 1)$$

- (a) vertex (1, 2)
- (b) focus (1 + 2, 2) = (3, 2) (cf. $y^2 = 4ax$)
- (c) directrix x = (1 2) = -1
- (d) axis of symmetry y = 2

17(ii)

$$x^{2} + 12y + 4x = 8$$

$$\Rightarrow 12y = 8 - x^{2} - 4x$$

$$\Rightarrow 12y = 8 - (x+2)^{2} + 4$$

$$\Rightarrow 12(y-1) = -(x+2)^{2}$$

- (a) vertex (-2, 1)
- (b) focus (-2, 1-3) = (-2, -2)
- (c) directrix y = (1 + 3) = 4
- (d) axis of symmetry x = -2

18

$$25x^{2} + 16y^{2} - 100x - 256y + 724 = 0$$

$$\Rightarrow 25x(x^{2} - 4x) + 16(y^{2} - 16) + 724 = 0$$

$$\Rightarrow 25(x - 2)^{2} + 16(y - 8)^{2} = 100 + 1024 - 724$$

$$\Rightarrow 25x(x - 2)^{2} + 16(y - 8)^{2} = 400$$

$$\Rightarrow \frac{(x - 2)^{2}}{16} + \frac{(y - 8)^{2}}{25} = 1$$

1.34 MEM Review Exercises 1.7

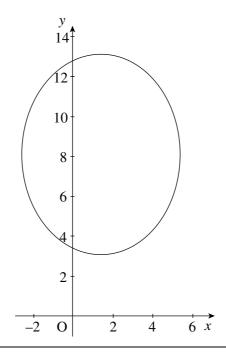
Centre of ellipse is (2, 8).

Major axis of length 10, minor axis of length 8.

Eccentricity is $\sqrt{\left(1-\left(\frac{4}{5}\right)^2\right)} = \frac{3}{5}$, vertices are $(2, 8 \pm 5) = (2, 3)$ or (2, 13).

Foci are $(2, 8 \pm \frac{3}{5} \times 5) = (2, 5)$ or (2, 11).

Directrices are $y = 8 \pm \frac{5}{3} \times 5 = \frac{-1}{3}$ or $\frac{49}{3}$.



19

$$\begin{split} 10.386\ 23 &= 10\,+\,12^{0}\,+\,4\times12^{-1}\,+\,7\times12^{-2}\,+\,7\times12^{-3}\,+\,4\times12^{-4}\\ &\,+\,10\times12^{-5}\,+\,4\times12^{-6}\,+\,7\times12^{-7}\,+\,7\times12^{-8}\\ &\,+\,4\times12^{-9}\,+\,10\times12^{-10}\,+\,\cdot\,\cdot\,\cdot\\ &= \Delta.4774\Delta4774\Delta\,.\quad.\quad.\\ &\,\text{where }\Delta_{12} &= 10_{10} \end{split}$$

■ 20 Suppose x has absolute error bound \mathcal{E}_x and relative error bound r_x . An approximation for x is at worst

$$\widetilde{x} = x + \mathcal{E}_x$$

$$\text{now} \quad \sqrt{\widetilde{x}} = (x + \mathcal{E}_x)^{1/2} = x^{1/2} \left(1 + \frac{\mathcal{E}_x}{x} \right)^{1/2}$$

$$= x^{1/2} (1 + r_x)^{1/2}$$

$$\approx x^{1/2} (1 + \frac{1}{2} r_x)$$

So the absolute error for \sqrt{x} is approximately $\frac{1}{2}\sqrt{x}r_x$ and the relative error is

$$\frac{\frac{1}{2}\sqrt{x}r_x}{\sqrt{x}} = \frac{r_x}{2}$$

Correctly rounded values:

■ 21 The positive root is

$$x = \frac{-5.7 + \sqrt{(5.7)^2 + 4 \times 1.4 \times 2.3}}{2 \times 1.4}$$

The error table for this calculation is

Label	Value	Absolute error bound		Relative error bound
\overline{a}	1.4	0.05	\rightarrow	0.036
b	5.7	0.05	\rightarrow	0.0088
c	-2.3	0.05	\rightarrow	0.022
b^2	32.49	0.58	\leftarrow	0.018
ac	-3.22	0.19	\leftarrow	0.058
$b^2 - 4ac$	45.37	1.34	\rightarrow	0.03
$\sqrt{b^2 - 4ac}$	6.736	0.10	\leftarrow	0.015
$-b + \sqrt{b^2 - 4ac}$	1.036	0.15	\rightarrow	0.14
$\frac{-b+\sqrt{b^2-4ac}}{2a}$	0.37	0.065	\leftarrow	0.176

$$x = 0.37 \pm 0.07$$

22

Label	Value	Absolute error bound		Relative error bound
u	3.00	0.005	\rightarrow	0.0017
v	4.00	0.005	\rightarrow	0.0013
$\frac{1}{u}$	$0.333\ 33$	$0.000\ 57$	\leftarrow	0.0017
$\frac{1}{v}$	0.25	$0.000\ 33$	\leftarrow	0.0013
$\frac{1}{u} + \frac{1}{v}$	$0.583\ 33$	0.0009	\rightarrow	0.0015
$f = \frac{1}{(\frac{1}{u} + \frac{1}{v})}$	1.7143	0.0026	\leftarrow	0.0015
uv	12.00	0.036	\leftarrow	0.003
u + v	7.00	0.01	\rightarrow	0.0014
$f = \frac{uv}{u+v}$	1.7143	0.0075	\leftarrow	0.0044

Method (a) gives the more accurate value

$$f = 1.714 \pm 0.0026$$

(b) gives

$$f = 1.714 \pm 0.0074$$

- 23 The representation to base b has more digits than the decimal representation so b < 10. The digit 5 appears in the base b representation so b > 5. The possibilities are 6, 7, 8, 9. Since the last digit of the base b representation is 2 the remainder on division by b is 2. Only 6 has this property. So b = 6.
- 24 Area of card $A(h, w) = (\frac{1}{2}w + 70 + w + 70 + \frac{1}{2}w + 5)(5 + 35 + h + 35 + 5)$ = (2w + 145)(h + 80)

Capacity is $h \times w \times 70$ and equals 1 136 000 mm³.

$$\Rightarrow hw = 113 600/7$$

$$A(h, w) = 2wh + 160w + 145h + 11600$$

$$= 145h + 160w + 2(113600)/7 + 11600$$

$$= C(h, w) + 308400/7$$

$$\frac{145h + 160w}{2} \ge \sqrt{145h \times 160w}$$

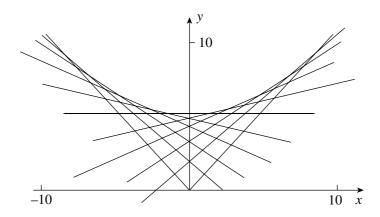
with equality where 145h = 160w, that is $w = \frac{145h}{160}$.

Hence $C(h, w) \ge \sqrt{145h \times 145h}$

where *h* is given by
$$h(\frac{145h}{160}) = 113 600/7$$
.

Hence
$$h = 133.8$$
 and $w = \frac{145}{160} \times 133.8 = 121.3$

Practical values are h = 134 and w = 121.



25(b)
$$\frac{y-p}{10-2p} = \frac{x+p}{10-p+p}; \quad 10y-10p = (10-2p)x+10p-2p^2$$
$$\Rightarrow \quad 5y = (5-p)x+10p-p^2$$

25(c) The value of p such that a member of the family of lines passes through (x_0, y_0) is given by $p^2 + (x_0 - 10)p + 5(y_0 - x_0) = 0$.

This quadratic has two real roots if $(x_0 - 10)^2 > 20(y_0 - x_0)$

i.e. if
$$x_0^2 - 20x_0 + 100 > 20y_0 - 20x_0$$

i.e. if
$$x_0^2 > 20(y_0 - 5)$$

The equation has no real roots if $x_0^2 < 20(y_0 - 5)$ i.e. no line of the family passes through (x_0, y_0) .

When $x_0^2 = 20(y_0 - 5)$, the equation has one double root and one line of the family passes through (x_0, y_0) .

The equation of the envelope is $y = x^2/20 + 5$.

25(d) FP² =
$$x^2 + (y - 10)^2$$
; PQ² = y^2 ; FP = PQ gives
 $x^2 + (y - 10)^2 = y^2 \implies x^2 + y^2 - 20y + 100 = y^2$
 $\implies y = x^2/20 + 5$