
CHAPTER 1

THE PHYSICS OF WAVES

Problem 1.1 Show that

Ψ(x, t) = (x − vt)
2

is a traveling wave.

Show that Ψ(x, t) is a wave by substitutioninto Equation 1.1. Proceed as in Example 1.1.

On­line version uses Ψ(x, t) = a (x − bt)
2

where a and b are randomized integers. All

intermediate steps are entered as symbolic expressions as in Example 1.1.

Using a and b as parameters, correct answers are as follows:

∂Ψ

∂t
= −2ba (x − bt)

∂Ψ2

∂t2
= 2a (b)

2

∂Ψ

∂x
= 2a (x − bt)

∂Ψ2

∂x2
= 2a
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2 THE PHYSICS OF WAVES

Identifying b as the velocity gives

1

v2

∂Ψ2

∂t2
= 2a

Specific answers depend on the particular values of the randomized parameters a and b.

The symbolic equation parser grades algebraically equivalent answers as correct.

Problem 1.2 A 1.00 m long string is stretched to a tension of 100 N . Find the wave speed

if it has a mass of 0.100 g.

Using

v =

√

F

µ

with F = 100N and µ = 10−4kg/m gives v = 1000m/s.

On­line version randomizes the string length, tension and string mass.

Problem 1.3 Show that

Ψ(x, t) = Ae−(a2x2 + b2t2 +2 a b x t)

is a traveling wave, and find the wave speed and direction of propagation. Assume that A, a
and b are all constants, and that a and b have units that make the quantity in the exponential

function unitless.

Substitution into the differential wave equation is tedious. The easier approach is to recast

into the form of Equations 1.2 and 1.2. For the above wavefuntion, this gives

Ψ = Ψ(x + vt) = Ae−(ax+bt)2 = Ae−a2(x+ b

a
t)2

On­line version Assigns integer values to a an b, and asks for a symbolic expression for

velocity. The correct answer is entered symbolically as − b
a . Specific answers depend on

the particular values of the randomized parameters a and b. The symbolic equation parser

grades algebraically equivalent answers as correct.

Problem 1.4 Show that g(x + vt) in Equation 1.3 is a solution of the one­dimensional

differential wave equation.
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Substitute into the differential wave equation as in Section 1.3 for f(x − vt).

On­line version uses symbolic input to check the needed derivatives. Letting u = x + vt,
the following derivatives are entered as indicated on the right hand side of the following

equations:

∂g

∂t
=

∂g

∂u

∂u

∂t
=

∂g

∂u
v

∂2g

∂t2
=

∂2g

∂u2
v2

∂g

∂x
=

∂g

∂u
∂2g

∂x2
=

∂2g

∂u2

1

v2

∂2g

∂t2
=

∂2g

∂u2

Since the last two results agree, g(x + vt) is a traveling wave.

Problem 1.5 Show that g(x + vt) in Equation 1.3 represents a wave that travels in the

negative­x direction.

Let u = x + vt. A particular point on the wave (eg. the crest) is described by a constant

value of u. Thus

du = dx + vdt = 0

giving

dx

dt
= −v

Thus, g(x + vt) represents a backward traveling wave.

Problem 1.6 Show explicitly (by direct substitution) that the function

Ψ(x, t) = A sin
2π

λ
(x ∓ vt)

solves the one­dimensional wave equation.

Substitute Ψ(x, t) into the differential wave equation.

On­line version uses symbolic input to check the needed derivatives for the specific case

of Ψ(x, t) = A sin 2π
λ

(x − vt). The following derivatives are entered as indicated on the
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right hand side of the following equations:

∂Ψ

∂t
(x, t) = −v

2π

λ
A cos

(

2π

λ
(x − vt)

)

∂2Ψ

∂t2
= −v2

(

2π

λ

)2

A sin

(

2π

λ
(x− vt)

)

∂Ψ

∂x
=

2π

λ
A cos

(

2π

λ
(x − vt)

)

∂2Ψ

∂x2
= −

(

2π

λ

)2

A sin

(

2π

λ
(x − vt)

)

1

v2

∂2Ψ

∂t2
= −

(

2π

λ

)2

A sin

(

2π

λ
(x − vt)

)

Since the last two results agree, Ψ(x, t) is a traveling wave.

Problem 1.7 Show explicitly that the function

Ψ(x, t) = A cos(kx ∓ ωt + φ)

solves the one­dimensional wave equation.

Substitute Ψ(x, t) into the differential wave equation.

On­line version uses symbolic input to check the needed derivatives for the specific case

of Ψ(x, t) = A cos(kx + ωt + φ) The following derivatives are entered as indicated on the

right hand side of the following equations:

∂Ψ

∂t
= −ωA sin (kx + ωt + ϕ)

∂2Ψ

∂t2
= −ω2A cos (kx + ωt + ϕ)

∂Ψ

∂x
= −kA sin (kx + ωt + ϕ)

∂2Ψ

∂x2
= −k2A cos (kx + ωt + ϕ)

1

v2

∂2Ψ

∂t2
= −k2A cos (kx + ωt + ϕ)

where the last result uses v = ω
k . Since the last two results agree, Ψ(x, t) is a traveling

wave.

Problem 1.8 The speed of sound is 343 m/s in air and 1493 m/s in water. Find the

wavelength emitted by a transducer that oscillates at 1000 Hz in both air and water. Assume

that the frequency of the oscillator is the same in both media. In each case, find k and ω.
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The angular frequency ω = 2πf is the same for each case, but the wavenumber k = ω/v
differs. Using the book parameters, ω = 6283 rad/s. When v = 343 m/s, k = 18.3 m−1,

and when v = 1493 m/s, k = 4.21 m−1.

On­line version randomizes the frequency.

Problem 1.9 A harmonic traveling wave is given by Ψ(z, t) = A sin(50z + 3000t). Find

the wave speed, frequency, angular frequency, and direction of propagation.

By inspection, ω = 50 m−1 and ω = 3000 rad/s, and the wave moves in the negative z di­

rection. The wave speed is v = ω/k = 60 m/s and the frequency is f = ω/2π = 477 Hz.

On­line version randomizes amplitude A (and asks for it), k and ω.

Problem 1.10 Show explicitly that the function

Ψ(x, t) = A sin(kx − ωt + φ) + B sin(kx + ωt + φ)

solves the one­dimensional wave equation.

Verify that Ψ(x, t) satisfies the differential wave equation by computing the necessary

derivatives:

∂Ψ

∂t
= −ωA cos (kx − ωt + ϕ) + ωA cos (kx + ωt + ϕ)

∂2Ψ

∂t2
= −ω2A sin (kx − ωt + ϕ) − ω2A sin (kx + ωt + ϕ) = −ω2Ψ

∂Ψ

∂x
= kA cos (kx− ωt + ϕ) + kA cos (kx + ωt + ϕ)

∂2Ψ

∂x2
= −k2Ψ

1

v2

∂2Ψ

∂t2
= −ω2

v2
Ψ = −k2Ψ =

∂2Ψ

∂x2

Problem 1.11 Show the small angle approximation: for small θ, sin θ ≈ θ. Check the

approximation for θ = 5◦, 10◦, and 20◦.

For each case, calculate the angle in radians along with the sine.

θ = 5◦ = 0.0872 rad; sin(5◦) = 0.0872
θ = 10◦ = 0.175 rad; sin(10◦) = 0.174
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θ = 20◦ = 0.349 rad; sin(20◦) = 0.342

On­line version randomizes each of the above angles in the vicinity of the book values.

Problem 1.12 Show that cosx = 1 − x2

2! + x4

4! − x6

6! + ....

Proceed as in Example 1.3:

f |0 = 1

d

dx
cosx = − sin x ⇒ df

dx

∣

∣

∣

∣

0

= 0

d2f

dx2

∣

∣

∣

∣

0

= −1
d3f

dx3

∣

∣

∣

∣

0

= 0
d4f

dx4

∣

∣

∣

∣

0

= +1
d5f

dx5

∣

∣

∣

∣

0

= 0
d6f

dx6

∣

∣

∣

∣

0

= −1

Substitution into the Taylor Series formula gives the desired result.

Problem 1.13 Show that ex = 1 + x + x2

2! + x3

3! + x4

4! + ....

Proceed as in Example 1.3:

f |0 =
df

dx

∣

∣

∣

∣

0

=
d2f

dx2

∣

∣

∣

∣

0

=
d3f

dx3

∣

∣

∣

∣

=
d4f

dx4

∣

∣

∣

∣

0

=
d5f

dx5

∣

∣

∣

∣

0

=
d6f

dx6

∣

∣

∣

∣

0

= 1

Substitution into the Taylor Series formula gives the desired result.

Problem 1.14 Express the following numbers in polar form: 4 + 5i, −4 − 5i, 4 − 5i,
−4 + 5i. In each case, graph the number on the complex plane.

z1 = 4 + 5i ⇒ r1 =
√

41 θ1 = tan−1

(

5

4

)

= 51.3◦

z2 = −4 − 5i ⇒ r2 =
√

41 θ2 = tan−1

(

5

4

)

+ 180◦ = 231◦

z3 = 4 − 5i ⇒ r3 =
√

41 θ3 = tan−1

(

−5

4

)

+ 360◦ = 309◦

z4 = −4 + 5i ⇒ r4 =
√

41 θ4 = tan−1

(

−5

4

)

+ 180◦ = 129◦

On­line version replaces the 4 and 5 above with random integers between 2 and 9.
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Problem 1.15 Express the following numbers in polar form: 3 + 5i, −2 − 6i, 5 − 4i,
−3 + 8i. In each case, graph the number on the complex plane.

z1 = 3 + 5i ⇒ r1 =
√

34 θ1 = tan−1

(

5

3

)

= 1.03 rad

z2 = −2 − 6i ⇒ r2 =
√

40 θ2 = tan−1

(

6

2

)

+ π = 4.39 rad

z3 = 5 − 4i ⇒ r3 =
√

41 θ3 = tan−1

(

−4

5

)

+ 2π = 5.61 rad

z4 = −3 + 8i ⇒ r4 =
√

73 θ4 = tan−1

(

−8

3

)

+ π = 1.93 rad

On­line version replaces Re (z) and Im (z) with random integers between 2 and 9 without

changing the quadrant for each case above.

Problem 1.16 Express the following in Cartesian form: (3+5i)/(4−7i), (−3+6i)/(3+9i).

z1 =
(3 + 5i)

(4 − 7i)
=

(3 + 5i)

(4 − 7i)

(4 + 7i)

(4 + 7i)
=

−23 + 41i

65
= −0.354 + 0.631i

z2 =
(−3 + 6i)

(3 + 9i)
=

(−3 + 6i)

(3 + 9i)

(3 − 9i)

(3 − 9i)
=

45 + 45i

90
= 2 + 2i

On­line version randomizes real and imaginary parts of both numerators and denominators.

Problem 1.17 Let z1 = 10 e0.5 i and z2 = 20 e−0.8 i. Find the real part, imaginary part,

and polar form of

a) z1 + z2

b) z1 − z2

c) z1 z2

d) z1/z2

For (a) and (b), begin by computing the real and imaginary parts, recording an extra digit

or so to avoid round­off error.

Re[z1] = 10 cos (0.5) = 8.776 Im[z1] = 10 sin (0.5) = 4.794
Re[z2] = 20 cos (−0.8) = 13.93 Im[z2] = 20 sin (−0.8) = −14.35

Thus:

z1 + z2 = 22.7 − 9.56i = 26.6e5.88i
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z1 − z2 = −5.15 + 19.1i = 19.8e2.88i

Multiplication and division are easier in polar form:

z1 z2 = 200e−0.3i = 200 [cos (−0.3i) + i sin (−0.3i)] = 191− 59.1i

z1

z2
= 0.5e1.3i = 0.134 + 0.482i

On­line version randomizes the magnitude and angle of both z1 and z2.

Problem 1.18 For each of the following complex numbers, find the real part and the

imaginary part, and express the number in polar form.

a) z = (4 + 5i)2

b) z = 5(1 + i)eiπ/6

(4 + 5i)
2

= (4 + 5i) (4 + 5i) = −9 + 40i = 41e1.79i

5 (1 + i) ei π

6 = (5 + 5i) (0.866 + 0.5i) = 1.83 + 6.83i = 7.07e1.31i

On­line version randomizes both subparts.

Problem 1.19 Show explicitly that the following functions are solutions to the spherically

symmetric wave equation.

(a) Ψ(r, t) =
A

r
cos (kr ∓ ωt + ϕ)

(b) Ψ(r, t) =
A

r
ei((kr∓ωt+ϕ)

In each case, substitute Ψ(r, t) into the differential wave equation.

On­line version uses the complex representation:

Ψ(r, t) =
A

r
exp [i (kr − ωt + ϕ)]

Answers are entered symbolically, paying close attention to the indicated factorization.

Only the expressions inside the curly braces are entered into the symbolic answer field.

Note the multiplication symbols, which must be entered explicitly.

1

r2

∂

∂r

(

r2 ∂Ψ

∂r

)

=
1

r2

∂

∂r
{−1 + i ∗ k ∗ r}A exp [i (kr − ωt + ϕ)]

=
1

r2

{

−k2 ∗ r
}

A exp [i (kr − ωt + ϕ)]

=
{

−k2
}

Ψ(r, t)
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Similarly,
∂Ψ

∂t
= {−i ∗ ω}Ψ(r, t)

∂2Ψ

∂t2
=

{

−ω2
}

Ψ(r, t)

Check for a solution:
1

v2

∂2Ψ

∂t2
=

{−ω2

v2

}

Ψ(r, t)

The spherically symmetric wave equation will be satisfied provided

v =
{ω

k

}

Problem 1.20 Find the equation for a plane electromagnetic wave whose propagation vector
~k is parallel to a line in the x­z plane that is 30◦ measured counter clockwise from the

positive x­axis. Assume that ~k lies in the first quadrant of the x­z plane.

Using the complex representation,

Ψ(x, y, z, t) = A exp[kxx + kyy + kzz − ωt + ϕ]

with

kx = k cos (30◦) = 0.866k

ky = 0

kz = k sin (30◦) = 0.5k

Thus

Ψ(x, y, z, t) = A exp[0.866kx + 0.5kz − ωt + ϕ]

On­line version uses a symbolic value for the angle theta. The expressions inside the curly

braces are entered into the symbolic answer fields:

kx = {k ∗ cos (θ)}
ky = {0}
kz = {k ∗ sin (θ)}

Problem 1.21 Determine the direction of propagation of the following harmonic traveling

waves:

a) Ψ(z, t) = A sin(kz − ωt)
b) Ψ(y, t) = A cos(ωt − ky)
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c) Ψ(x, t) = A cos(ωt + kx)
d) Ψ(x, t) = A cos(−ωt − kx)

a) +z

b) +y

c) ­x

b) ­x

On­line version: correct answers are selected from drop­down lists.

Problem 1.22 Show that the Gaussian wave Ψ(x, t) = Ae−a(bx − ct)2 is a solution to the

one­dimensional wave equation. If a = 5.00, b = 10.0, c = 100, with a(bx − ct)2

unitless, determine the wave speed.

Recasting the wavefuntion as a general forward traveling wave gives a velcity of c/b =
10 m/s.

On­line version randomizes a, b and c.

Problem 1.23 Sketch or plot the following wavefunction at times t = 0, t = 0.5 s, and

t = 1.0 s:

Ψ(x, t) =
1.0

1 + (x + 10t)
2

At t = 0, this is a pulse centered at x = 0. At t = 0.5 s, the pulse is centered at x = −5 m,

and at t = 1.0 s it is centered at x = −10 m. The sketch or plot should be similar to Figure

1.2, except that the pulse moves in the negative x­direction.

Problem 1.24 A 1­D harmonic traveling wave that travels in the−y direction has amplitude

10 (unitless), wavelength 10.0 m, period 2.0 s and initial phase π. Using the complex

representation, find an expression for this wave that uses angular frequency and propagation

constant.

The angular frequency is

ω =
2π

T
= π

and the wavenumber is

k =
2π

λ
=

π

5
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The wavefunction is

Ψ(y, t) = 10 exp
[

i
(π

5
y + πt + π

)]

On­line version uses symbolic input with symbolic values for k and ω. The wavefunction

travels in the −x direction and has an initial phase of π/8. The symoblic answer is entered

as the input inside the curly braces:

Ψ(y, t) = A exp
{

i ∗
(

k ∗ x + ω ∗ t +
π

8

)}

Problem 1.25 Light from a helium­neon laser has a wavelength of 633 nm and a wave

speed of 3.00×108 m/s. Find the frequency, period, angular frequency, and wave number

for this light.

f =
c

λ
=

3 × 108

633 × 10−9
= 4.74× 1014Hz

T =
1

f
= 2.11× 10−15s

ω = 2πf = 2.98× 1015rad/s

k =
ω

c
= 9.92× 106m−1

On­line version is not randomized.

Problem 1.26 Consider a harmonic wave given by

Ψ(x, t) = U(x, y, z)e−iωt

where U(x, y, z) is called the complex amplitude. Show that U satisfies the Helmholz

equation:
(

∇2 + k2
)

U (x, y, z) = 0

where k is the propagation constant.

Since Ψ is a wave, it satisfies the differential wave equation:

∇2Ψ =
1

v2

∂2Ψ

∂t2

Since U only depends upon space coordinates,

1

v2

∂2Ψ

∂t2
=

1

v2

(

−ω2Ue−iωt
)

= −k2Ue−iωt =
(

∇2U
)

e−iωt
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Cancelling the exponential terms and treating the Laplacian as an operator gives

(

∇2 + k2
)

U (x, y, z) = 0

Problem 1.27 Show that a complex number divided by its complex conjugate gives a result

whose magnitude is one.

Let

z =
z1

z∗1

where z and z1 are complex numbers. The magnitude of z is given by

|z| =
√

z z∗ =

√

z1

z∗1

(

z1

z∗1

)∗
=

√

z1

z∗1

z∗1
z1

= 1

Problem 1.28 Show that z =
√

2
2

(1 + i) is a square root of i. Find another one.

[√
2

2
(1 + i)

]2

=
1

2
(2i) = i

The other root is

z = −
√

2

2
(1 + i)

Problem 1.29 Find the real and imaginary parts of

a) z =
(

2ei π

4

)3

b) z = (2 + 3i)
3

(

2ei π

4

)3
= 8ei 3π

4 = 8

[

cos
3π

4
+ i sin

3π

4

]

= −5.66 + 5.66i

(2 + 3i)
3

= (2 + 3i) (−3 + 12i) = −42 + 15i

On­line version randomizes both problem subparts.
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Problem 1.30 Hyperbolic sines and cosines are defined as follows: sinhx = ex−e−x

2 and

cosh x = ex+e−x

2
. Show that sin(ix) = i sinh(x) and cos(ix) = cosh(x).

sin (ix) =
ei(ix) − e−i(ix)

2i
=

e−x − ex

2i
=

i

i

(

e−x − ex

2i

)

= i

(

ex − e−x

2

)

= i sinh(x)

cos (ix) =
ei(ix) + e−i(ix)

2
=

e−x + ex

2
= cosh(x)

Problem 1.31 Find the Taylor series expansions for hyperbolic sine and hyperbolic cosine.

Compute the Taylor series explicitly as in Example 1.3, or use the Taylor series for each

exponential term:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ ...

e−x = 1 − x +
x2

2!
− x3

3!
+

x4

4!
+ ...

Thus

cosh x =
ex + e−x

2
=

(

1 + x + x2

2!
+ x3

3!
+ x4

4!
+ ...

)

+
(

1 − x + x2

2!
− x3

3!
+ x4

4!
+ ...

)

2

= 1 +
x2

2!
+

x4

4!
+ ...

sinhx =
ex − e−x

2
=

(

1 + x + x2

2!
+ x3

3!
+ x4

4!
+ ...

)

−
(

1 − x + x2

2!
− x3

3!
+ x4

4!
+ ...

)

2

= x +
x3

3!
+

x5

5!
...

Problem 1.32 Consider a vector ~v, and let a be the angle between ~v and the positive x­axis,

b be the angle between ~v and the positive y­axis, and c be the angle between ~v and the

positive z­axis. Define the direction cosines α, β, and γ as follows:

α = cos a =
vx

|v|

β = cos b =
vy

|v|

γ = cos c =
vz

|v|
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a) Show that α2 + β2 + γ2 = 1.

b) Show that the function

Ψ(x, y, z, t) = Aei[k(αx+βy+γz)∓ωt]

is a three­dimensional plane wave that solves the differential wave equation in Cartesian

coordinates.

According to the definition given,

α2 + β2 + γ2 =
v2

x

v2
+

v2
y

v2
+

v2
z

v2
=

v2

v2
= 1

For part (b), we must substitute into the three­dimensional wave equation in Cartesian

coordinates. The x derivates are

∂Ψ

∂x
= ikαΨ

∂2Ψ

∂x2
= −k2α2Ψ

with similar expressions for y and z. Thus

∇2Ψ = −k2
(

α2 + β2 + γ2
)

Ψ = −k2Ψ

Substitution into the wave equation gives

1

v2

∂2Ψ

∂t2
=

−ω2

v2
Ψ = −k2Ψ = ∇2Ψ

Problem 1.33 The Laplacian in cylindrical coordinates (ρ, ϕ, z) is given by

∇2 =
1

ρ

∂

∂ρ
+

∂2

∂ρ2
+

1

ρ2

∂2

∂ϕ2
+

∂2

∂z2

A cylindrical wave has a wavefront that is constant on a cylinder. In other words, it does

not depend upon ϕ or z. Show that

Ψ =
A√
ρ
ei(kρ∓ωt)

approximately solves the differential wave equation in clylindrical coordinates for values

of ρ that are sufficiently large.

Taking the derivatives in the Laplacian:

∂Ψ

∂ρ
= − Ψ

2ρ
+ ikΨ

∂2Ψ

∂ρ2
= − 1

2ρ

(

∂Ψ

∂ρ

)

+
Ψ

2ρ2
+ ik

(

∂Ψ

∂ρ

)

= − 1

2ρ

(

− Ψ

2ρ
+ ikΨ

)

+
Ψ

2ρ2
+ ik

(

− Ψ

2ρ
+ ikΨ

)

=
3Ψ

4ρ2
− ik

ρ
Ψ − k2Ψ
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Thus

∇2Ψ =
1

ρ

∂Ψ

∂ρ
+

∂2Ψ

∂ρ2

=
1

ρ

(

Ψ

2ρ
+ ikΨ

)

+
3Ψ

4ρ2
− ik

ρ
Ψ − k2Ψ

=
Ψ

4ρ2
− k2Ψ

The wave equation is approximately satisfied provided the first term in the last result can

be neglected.

Problem 1.34 Show that the spherically symmetric wave equation can be written as

∂2

∂r2
[rΨ(r, t)] =

1

v2

∂2

∂t2
[rΨ(r, t)]

which is a linear wave equation in the quantity rΨ(r, t). Show that Equations 1.59 and

1.60 are solutions.

Taking the derivatives on the right hand side:

∂

∂r
[rΨ] = Ψ + r

∂Ψ

∂r

∂2

∂r2
[rΨ] =

∂

∂r

{

Ψ + r
∂Ψ

∂r

}

= 2
∂Ψ

∂r
+ r

∂2Ψ

∂r2

The left hand side gives

1

v2

∂2

∂t2
[rΨ] =

r

v2

∂2Ψ

∂t2

Thus
1

v2

∂2Ψ

∂t2
=

1

r

{

2
∂Ψ

∂r
+ r

∂2Ψ

∂r2

}

=
2

r

∂Ψ

∂r
+

∂2Ψ

∂r2

This the the spherically symmetric wave equation, since

∇2Ψ =
1

r2

∂

∂r

[

r2 ∂Ψ

∂r

]

=
1

r2

[

2r
∂Ψ

∂r
+ r2 ∂2Ψ

∂r2

]

=
2

r

∂Ψ

∂r
+

∂2Ψ

∂r2
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Problem 1.35 Photons are particles of light with energy and momentum given by

E = hf

p =
h

λ

where f is the light frequency, λ is the light wavelength, and h is Planck’s constant:

h = 6.626× 10−34 J · s. Show that for photons, E = cp.

cp = c
h

λ
= hf = E




