
CHAPTER 1 
FUNDAMENTAL  CONCEPTS 

 
 
1.1   We use the first three steps of Eq. 1.11  
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Adding the above, we get 
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 Adding and subtracting 
E

xσν  from the first equation, 
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 Similar expressions can be obtained for εy, and  ε z. 
 
 From the relationship for γyz and Eq. 1.12, 
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 Above relations can be written in the form 
    σ = Dε 
 where D is the material property matrix defined in Eq. 1.15.     
 
 
1.2    Note that u2(x) satisfies the zero slope boundary condition at the support. 
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1.3 Plane strain condition implies that  
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        which gives 
                                    ( )yxz σ+σν=σ  

 We have, 0.3    psi 1030    psi 10000    psi 20000 6 =ν×=−=σ=σ Eyx . 
 On substituting the values, 
 
                                                 psi 3000=σ z             
 
 
1.4 Displacement field 
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1.5  On inspection, we note that the displacements u and v are given by 
 
     u =  0.1 y + 4 
    v = 0 
 
 It is then easy to see that 
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1.6    The displacement field is given as 
 
    u =  1 + 3x + 4x3 + 6xy2 

    v = xy − 7x2 

 
 (a)  The strains are then given by 
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(b) In order to draw the contours of the strain field using MATLAB, we need to create a 

script file, which may be edited as a text file and save with “.m” extension. The file 
for plotting εx is given below 

 
file “prob1p5b.m” 

     [X,Y] = meshgrid(-1:.1:1,-1:.1:1); 
     Z = 3.+12.*X.^2+6.*Y.^2; 
     [C,h] = contour(X,Y,Z); 

clabel(C,h); 
 
On running the program, the contour map is shown as follows: 
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    Contours of  εx 
 
Contours of εy and γxy are obtained by changing Z in the script file.  The numbers on 
the contours show the function values. 
 

(c) The maximum value of εx is at any of the corners of the square region.  The 
maximum value is 21. 

                                                                                                                                 
 
1.7   
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1.9 From the derivation made in P1.1, we have 
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                   Lame’s constants λ and µ are defined in the expressions 
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µ is same as the shear modulus G.      
 
 
1.10  
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1.11 
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1.12   Following the steps of Example 1.1, we have 
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 Above matrix form is same as the set of equations: 
 
   170 q1  − 80 q2  =  60 
 
            − 80 q1  + 80 q2  =  50 
 
 Solving for q1 and q2, we get 
 
    q1 =  1.222 mm 
 
    q2 =  1.847 mm 
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1.13   

 
When the wall is smooth, 0xσ = . T∆ is the temperature rise. 

a) When the block is thin in the z direction, it corresponds to plane stress condition. The 
rigid walls in the y direction require 0yε = . The generalized Hooke’s law yields the 
equations 
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From the second equation, setting 0yε = , we get  y E Tσ α= − ∆ . xε is then calculated 

using the first equation as ( )1 Tν α− ∆ . 
b) When the block is very thick in the z direction, plain strain condition prevails. Now we 

have 0zε = , in addition to 0yε = . zσ is not zero. 
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From the last two equations, we get 
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xε is now obtained from the first equation.     
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