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Chap. 1 First-Order ODEs

Sec. 1.1 Basic Concepts. Modeling

To get a good start into this chapter and this section, quickly review your basic calculus. Take a look at
the front matter of the textbook and see a review of the main differentiation and integration formulas. Also,
Appendix 3, pp. A63–A66, has useful formulas for such functions as exponential function, logarithm, sine
and cosine, etc. The beauty of ordinary differential equations is that the subject is quite systematic and has
different methods for different types of ordinary differential equations, as you shall learn. Let us discuss
some Examples of Sec. 1.1, pp. 4–7.

Example 2, p. 5. Solution by Calculus. Solution Curves. To solve the first-order ordinary
differential equation (ODE)

y′ = cos x

means that we are looking for a function whose derivative is cos x. Your first answer might be that the
desired function is sin x, because (sin x)′ = cos x. But your answer would be incomplete because also
(sin x + 2)′ = cos x, since the derivative of 2 and of any constant is 0. Hence the complete answer is
y = cos x + c, where c is an arbitrary constant. As you vary the constants you get an infinite family
of solutions. Some of these solutions are shown in Fig. 3. The lesson here is that you should never
forget your constants!

Example 4, pp. 6–7. Initial Value Problem. In an initial value problem (IVP) for a first-order ODE
we are given an ODE, here y′ = 3y, and an initial value condition y(0) = 5.7. For such a problem, the
first step is to solve the ODE. Here we obtain y(x) = ce3x as shown in Example 3, p. 5. Since we also
have an initial condition, we must substitute that condition into our solution and get y(0) = ce3·0 =
ce0 = c · 1 = c = 5.7. Hence the complete solution is y(x) = 5.7e3x. The lesson here is that for an
initial value problem you get a unique solution, also known as a particular solution.
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Modeling means that you interpret a physical problem, set up an appropriate mathematical model,
and then try to solve the mathematical formula. Finally, you have to interpret your answer.
Examples 3 (exponential growth, exponential decay) and 5 (radioactivity) are examples of modeling
problems. Take a close look at Example 5, p. 7, because it outlines all the steps of modeling.
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3. Calculus. From Example 3, replacing the independent variable t by x we know that y′ = 0.2y has a
solution y = 0.2ce0.2x. Thus by analogy, y′ = y has a solution

1 · ce1·x = cex,

where c is an arbitrary constant.
Another approach (to be discussed in details in Sec. 1.3) is to write the ODE as

dy

dx
= y,

and then by algebra obtain

dy = y dx, so that
1

y
dy = dx.

Integrate both sides, and then apply exponential functions on both sides to obtain the same
solution as above

∫
1

y
dy =

∫
dx, ln |y| = x + c, eln |y| = ex+c, y = ex · ec = c∗ex,

(where c∗ = ec is a constant).

The technique used is called separation of variables because we separated the variables, so that y
appeared on one side of the equation and x on the other side before we integrated.

7. Solve by integration. Integrating y′ = cosh 5.13x we obtain (chain rule!) y = ∫
cosh 5.13x dx

= 1
5.13 (sinh 5.13x) + c. Check: Differentiate your answer:

(
1

5.13 (sinh 5.13x) + c
)′ = 1

5.13 (cosh 5.13x) · 5.13 = cosh 5.13x, which is correct.

11. Initial value problem (IVP). (a) Differentiation of y = (x + c)ex by product rule and definition of
y gives

y′ = ex + (x + c)ex = ex + y.

But this looks precisely like the given ODE y′ = ex + y. Hence we have shown that indeed
y = (x + c)ex is a solution of the given ODE. (b) Substitute the initial value condition into
the solution to give y(0) = (0 + c)e0 = c · 1 = 1

2 . Hence c = 1
2 so that the answer to the IVP is

y = (x + 1
2 )ex.

(c) The graph intersects the x-axis at x = 0.5 and shoots exponentially upward.
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19. Modeling: Free Fall. y′′ = g = const is the model of the problem, an ODE of second order.
Integrate on both sides of the ODE with respect to t and obtain the velocity v = y′ = gt + c1

(c1 arbitrary). Integrate once more to obtain the distance fallen y = 1
2gt2 + c1t + c2 (c2 arbitrary).

To do these steps, we used calculus. From the last equation we obtain y = 1
2gt2 by imposing the

initial conditions y(0) = 0 and y′(0) = 0, arising from the stone starting at rest at our choice of origin,
that is the initial position is y = 0 with initial velocity 0. From this we have y(0) = c2 = 0 and v(0) =
y′(0) = c1 = 0.

Sec. 1.2 Geometric Meaning of y′ = f (x, y). Direction Fields, Euler’s Method

Problem Set 1.2. Page 11

1. Direction field, verification of solution. You may verify by differentiation that the general
solution is y = tan(x + c) and the particular solution satisfying y( 1

4π ) = 1 is y = tan x. Indeed, for the
particular solution you obtain

y′ = 1

cos2x
= sin2x + cos2x

cos2x
= 1 + tan2x = 1 + y2

and for the general solution the corresponding formula with x replaced by x + c.

1

–1

–2

2

10.5–0.5–1 0

y

x

y(x)

Sec. 1.2 Prob. 1. Direction Field

15. Initial value problem. Parachutist. In this section the usual notation is (1), that is, y′ = f (x, y),
and the direction field lies in the xy-plane. In Prob. 15 the ODE is v = f (t, v) = g − bv2/m, where v
suggests velocity. Hence the direction field lies in the tv-plane. With m = 1 and b = 1 the ODE
becomes v′ = g − v2. To find the limiting velocity we find the velocity for which the acceleration
equals zero. This occurs when g − v2 = 9.80 − v2 = 0 or v = 3.13 (approximately). For v < 3.13
you have v′ > 0 (increasing curves) and for v > 3.13 you have v′ < 0 (decreasing curves). Note that
the isoclines are the horizontal parallel straight lines g − v2 = const, thus v = const.
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Sec. 1.3 Separable ODEs. Modeling
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1. CAUTION! Constant of integration. It is important to introduce the constant of integration
immediately, in order to avoid getting the wrong answer. For instance, let

y′ = y. Then ln |y| = x + c, y = c∗ex (c∗ = ec),

which is the correct way to do it (the same as in Prob. 3 of Sec. 1.1 above) whereas introducing the
constant of integration later yields

y′ = y, ln |y| = x, y = ex + C

which is not a solution of y′ = y when C �= 0.

5. General solution. Separating variables, we have y dy = −36x dx. By integration,

1
2y2 = −18x2 + c̃, y2 = 2c̃ − 36x2, y = ±

√
c − 36x2 (c = 2c̃).

With the plus sign of the square root we get the upper half and with the minus sign the lower half of
the ellipses in the answer on p. A4 in Appendix 2 of the textbook.

For y = 0 (the x-axis) these ellipses have a vertical tangent, so that at points of the x-axis the
derivative y′ does not exist (is infinite).

17. Initial value problem. Using the extended method (8)–(10), let u = y/x. Then by product rule
y′ = u + xu′. Now

y′ = y + 3x4cos2(y/x)

x
= y

x
+ 3x3 cos

(y

x

)
= u + 3x3 cos2 u = u + x(3x2 cos2 u)

so that u′ = 3x2 cos2 u.
Separating variables, the last equation becomes

du

cos2 u
= 3x2dx.

Integrate both sides, on the left with respect to u and on the right with respect to x, as justified in the
text then solve for u and express the intermediate result in terms of x and y

tan u = x3 + c, u = y

x
= arctan (x3 + c), y = xu = x arctan (x3 + c).

Substituting the initial condition into the last equation, we have

y(1) = 1 arctan (13 + c) = 0, hence c = −1.

Together we obtain the answer

y = x arctan (x3 − 1).

23. Modeling. Boyle–Mariotte’s law for ideal gases. From the given information on the rate of
change of the volume

dV

dP
= −V

P
.
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Separating variables and integrating gives

dV

V
= −dP

P
,

∫
1

V
dV = −

∫
1

P
dP, ln |V | = −ln |P| + c.

Applying exponents to both sides and simplifying

eln |V | = e−ln |P|+c = e−ln |P| · ec = 1

eln |P| · ec = 1

|P|e
c.

Hence we obtain for nonnegative V and P the desired law (with c∗ = ec, a constant)

V · P = c∗.

Sec. 1.4 Exact ODEs. Integrating Factors

Use (6) or (6∗), on p. 22, only if inspection fails. Use only one of the two formulas, namely, that in which
the integration is simpler. For integrating factors try both Theorems 1 and 2, on p. 25. Usually only one of
them (or sometimes neither) will work. There is no completely systematic method for integrating factors,
but these two theorems will help in many cases. Thus this section is slightly more difficult.
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1. Exact ODE. We proceed as in Example 1 of Sec. 1.4. We can write the given ODE as

M dx + N dy = 0 where M = 2xy and N = x2.

Next we compute
∂M

∂y
= 2x (where, when taking this partial derivative, we treat x as if it were a

constant) and
∂N

∂x
= 2x (we treat y as if it were a constant). (See Appendix A3.2 for a review of partial

derivatives.) This shows that the ODE is exact by (5) of Sec. 1.4. From (6) we obtain by integration

u =
∫

M dx + k(y) =
∫

2xy dx + k(y) = x2y + k(y).

To find k(y) we differentiate this formula with respect to y and use (4b) to obtain

∂u

∂y
= x2 + dk

dy
= N = x2.

From this we see that

dk

dy
= 0, k = const.

The last equation was obtained by integration. Insert this into the equation for u, compare with (3) of
Sec. 1.4, and obtain u = x2y + c∗. Because u is a constant, we have

x2y = c, hence y = c/x2.
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5. Nonexact ODE. From the ODE, we see that P = x2 + y2 and Q = 2xy. Taking the partials we have
∂P

∂y
= 2y and

∂Q

∂x
= −2y and, since they are not equal to each other, the ODE is nonexact. Trying

Theorem 1, p. 25, we have

R = (∂P/∂y − ∂Q/∂x)

Q
= 2y + 2y

−2xy
= 4y

−2xy
= −2

x

which is a function of x only so, by (17), we have F(x) = exp
∫

R(x) dx. Now

∫
R(x) dx = −2

∫
1

x
dx = −2 ln x = ln (x−2) so that F(x) = x−2.

Then

M = FP = 1 + x−2y2 and N = FQ = −2x−1y. Thus
∂M

∂y
= 2x−2y = ∂N

∂x
.

This shows that multiplying by our integrating factor produced an exact ODE. We solve this equation
using 4(b), p. 21. We have

u =
∫

−2x−1y dy = −2x−1
∫

y dy = −x−1y2 + k(x).

From this we obtain

∂u

∂x
= x−2y2 + dk

dx
= M = 1 + x−2y2, so that

dk

dx
= 1 and k =

∫
dx = x + c∗.

Putting k into the equation for u, we obtain

u(x, y) = −x−1y2 + x + c∗ and putting it in the form of (3) u = −x−1y2 + x = c.

Solving explicitly for y requires that we multiply both sides of the last equation by x, thereby
obtaining (with our constant = −constant on p. A5)

−y2 + x2 = cx, y = (x2 − cx)1/2.

9. Initial value problem. In this section we usually obtain an implicit rather than an explicit general
solution. The point of this problem is to illustrate that in solving initial value problems, one can
proceed directly with the implicit solution rather than first converting it to explicit form.

The given ODE is exact because (5) gives

My = ∂

∂y
(2e2x cos y) = −2e2x sin y = Nx.

From this and (6) we obtain, by integration,

u =
∫

M dx =
∫

2 e2x cos y dx = e2x cos y + k(y).

uy = N now gives

uy = −e2x sin y + k ′(y) = N , k ′(y) = 0, k(y) = c∗ = const.
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Hence an implicit general solution is

u = e2x cos y = c.

To obtain the desired particular solution (the solution of the initial value problem), simply insert
x = 0 and y = 0 into the general solution obtained:

e0 cos 0 = 1 · 1 = c.

Hence c = 1 and the answer is

e2x cos y = 1.

This implies

cos y = e−2x, thus the explicit form y = arccos (e−2x).

15. Exactness. We have M = ax + by, N = kx + ly. The answer follows from the exactness condition
(5), p. 21. The calculation is

My = b = Nx = k, M = ax + ky, u =
∫

M dx = 1

2
ax2 + kxy + κ(y)

with κ(y) to be determined from the condition

uy = kx + κ ′(y) = N = kx + ly, hence κ ′ = ly.

Integration gives κ = 1
2 ly2. With this κ , the function u becomes

u = 1
2ax2 + kxy + 1

2 ly2 = const.

(If we multiply the equation by a factor 2, for beauty, we obtain the answer on p. A5).

Sec. 1.5 Linear ODEs. Bernoulli Equation. Population Dynamics

Example 3, pp. 30–31. Hormone level. The integral

I =
∫

eKt cos
π t

12
dt

can be evaluated by integration by parts, as is shown in calculus, or, more simply, by undetermined
coefficients, as follows. We start from

∫
eKt cos

π t

12
dt = eKt

(
a cos

π t

12
+ b sin

π t

12

)

with a and b to be determined. Differentiation on both sides and division by eKt gives

cos
π t

12
= K

(
a cos

π t

12
+ b sin

π t

12

)
− aπ

12
sin

π t

12
+ bπ

12
cos

π t

12
.

We now equate the coefficients of sine and cosine on both sides. The sine terms give

0 = Kb − aπ

12
, hence a = 12K

π
b.
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The cosine terms give

1 = Ka + π

12
b =

(
12K2

π
+ π

12

)
b = 144K2 + π2

12π
b.

Hence,

b = 12π

144K2 + π2
, a = 144K

144K2 + π2
.

From this we see that the integral has the value

eKt
(

a cos
π t

12
+ b sin

π t

12

)
= 12π

144K2 + π2
eKt

(
12K

π
cos

π t

12
+ sin

π t

12

)
.

This value times B (a factor we did not carry along) times e−Kt (the factor in front of the integral on
p. 31) is the value of the second term of the general solution and of the particular solution in the
example.

Example 4, pp. 32–33. Logistic equation, Verhulst equation. This ODE

y′ = Ay − By2 = Ay

(
1 − B

A
y

)

is a basic population model. In contrast to the Malthus equation y′ = ky, which for a positive initial
population models a population that grows to infinity (if k > 0) or to zero (if k < 0), the logistic
equation models growth of small initial populations and decreasing populations of large initial
populations. You can see directly from the ODE that the dividing line between the two cases is
y = A/B because for this value the derivative y′ is zero.
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5. Linear ODE. Multiplying the given ODE (with k �= 0) by ekx, you obtain

(y′ + ky)ekx = e−kxeks = e0 = 1.

The left-hand side of our equation is equal to (yekx)′, so that we have

(yekx)′ = 1.

Integration on both sides gives the final answer.

yekx = x + c, y = (x + c)e−kx.

The use of (4), p. 28, is simple, too, namely, p(x) = k, h = ∫
p(x) dx = ∫

k dx = kx. Furthermore,
r = e−kx. This gives

y = e−kx
(∫

ekxe−kxdx + c

)

= e−kx
(∫

1 dx + c

)
= e−kx(x + c).
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9. Initial value problem. For the given ODE y′ + y sin x = ecos x we have in (4)

p(x) = sin x

so that by integration

h =
∫

sin x dx = −cos x

Furthermore the right-hand side of the ODE r = ecos x. Evaluating (4) gives us the general solution
of the ODE. Thus

y = ecos x
(∫

e−cos x · ecos x dx + c

)

= ecos x(x + c).

We turn to the initial condition and substitute it into our general solution and obtain the value for c

y(0) = ecos 0(0 + c) = −2.5, c = −2.5

e

Together the final solution to the IVP is

y = ecos x
(

x − 2.5

e

)
.

23. Bernoulli equation. In this ODE y′ + xy = xy−1 we have p(x) = x, g(x) = x and a = −1. The
new dependent variable is u(x) = [y(x)]1−a = y2. The resulting linear ODE (10) is

u′ + 2xu = 2x.

To this ODE we apply (4) with p(x) = 2x, r(x) = 2x hence

h =
∫

2x dx = x2, −h = −x2

so that (4) takes the form

u = e−x2
(∫

ex2
(2x) dx + c

)
.

In the integrand, we notice that (ex2
)′ = (ex2

) · 2x, so that the equation simplifies to

u = e−x2
(ex2 + c) = 1 + ce−x2

.

Finally, u(x) = y2 so that y2 = 1 + ce−x2
. From the initial condition [y(0)]2 = 1 + c = 32. It follows

that c = 8. The final answer is

y = 1 + 8e−x2
.

31. Newton’s law of cooling. Take a look at Example 6 in Sec. 1.3, pp. 15–16. Newton’s law of
cooling is given by

dT

dt
= K(T − TA).
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In terms of the given problem, Newton’s law of cooling means that the rate of change of the
temperature T of the cake at any time t is proportional to the difference of temperature of the
cake and the temperature TA of the room. Example 6 also solves the equation by separation of
variables and arrives at

T (t) = TA + cekt .

At time t = 0, we have T (0) = 300 = 60 + c · e0·k = 60 + c, which gives that c = 240. Insert this
into the previous equation with TA = 60 and obtain

T (t) = 60 + 240ekt .

Ten minutes later is t = 10 and we know that the cake has temperature T (10) = 200 [◦F]. Putting this
into the previous equation we have

T (10) = 60 + 240e10k = 200, ek = ( 7
12

)1/10
, k = 1

10 ln
( 7

12

) = −0.0539.

Now we can find out the time t when the cake has temperature of T (t) = 61◦F. We set up, using the
computed value of k from the previous step,

60 + 240e−0.0539t = 61, e−0.0539t = 1

240
, t = −ln (240)

−0.0539
= −5.48

−0.0539
= 102 min.

Sec. 1.6 Orthogonal Trajectories

The method is rather general because one-parameter families of curves can often be represented as general
solutions of an ODE of first order. Then replacing y′ = f (x, y) by ỹ′ = −1/f (x, ỹ) gives the ODE of the
trajectories to be solved because two curves intersect at a right angle if the product of their slopes at the
point of intersection equals −1; in the present case, y′ỹ′ = −1.
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9. Orthogonal trajectories. Bell-shaped curves. Note that the given curves y = ce−x2
are

bell-shaped curves centered around the y-axis with the maximum value (0, c) and tangentially
approaching the x-axis for increasing |x|. For negative c you get the bell-shaped curves reflected
about the x-axis. Sketch some of them. The first step in determining orthogonal trajectories usually
is to solve the given representation G(x, y, c) = 0 of a family of curves for the parameter c. In the
present case, yex2 = c. Differentiation with respect to x then gives (chain rule!)

y′ex2 + 2xyex2 = 0, y′ + 2xy = 0.

where the second equation results from dividing the first by ex2
.

Hence the ODE of the given curves is y′ = −2xy. Consequently, the trajectories have the ODE
ỹ′ = 1/(2xỹ). Separating variables gives

2ỹ d ỹ = dx/x. By integration, 2ỹ2/2 = −ln |x| + c1, ỹ2 = −ln |x| + c1.

Taking exponents gives

eỹ2 = x · c2. Thus, x = c̃eỹ2

where the last equation was obtained by letting c̃ = 1/c2. These are curves that pass through (c̃, 0)
and grow extremely rapidly in the positive x direction for positive c̃ with the x-axis serving as an axis
of symmetry. For negative c̃ the curves open sideways in the negative x direction. Sketch some of
them for positive and negative c̃ and see for yourself.
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12. Electric field. To obtain an ODE for the given curves (circles), you must get rid of c. For this,
multiply (y − c)2 out. Then a term c2 drops out on both sides and you can solve the resulting
equation algebraically for c. The next step then is differentiation of the equation just obtained.

13. Temperature field. The given temperature field consists of upper halfs of ellipses (i.e., they do not
drop below the x-axis). We write the given equation as

G(x, y, c) = 4x2 + 9y2 − c = 0 y > 0.

Implicit differentiation with respect to x, using the chain rule, yields

8x + 18yy′ = 0 and y′ = −4x

9y
.

Using (3) of Sec. 1.6, we get

ỹ′ = − 1

4x/9ỹ
= 9ỹ

4x
so that

dỹ

dx
= 9ỹ

4x
and dỹ

1

9ỹ
= dx

1

4x
.

Integrating both sides gives

1

9

∫
1

ỹ
d ỹ = 1

4

∫
1

x
dx and

1

9
ln |ỹ| = 1

4
ln |x| + c1.

Applying exponentiation on both sides and using (1) of Appendix 3, p. A63, gives the desired
result y = x9/4 · c̃, as on p. A5. The curves all go through the origin, stay above the x-axis, and are
symmetric to the y-axis.

Sec. 1.7 Existence and Uniqueness of Solutions for Initial Value Problems

Since absolute values are always nonnegative, the only solution of |y′| + |y| = 0 is y = 0 (y(x) ≡ 0 for
all x) and this function cannot satisfy the initial condition y(0) = 1 or any initial condition y(0) = y0
with y0 �= 0.

The next ODE in the text y′ = 2x has the general solution y = x2 + c (calculus!), so that y(0) = c = 1
for the given initial condition.

The third ODE xy′ = y − 1 is separable,

dy

y − 1
= dx

x
.

By integration,

ln |y − 1| = ln |x| + c1, y − 1 = cx, y = 1 + cx,

a general solution which satisfies y(0) = 1 with any c because c drops out when x = 0. This happens only
at x = 0. Writing the ODE in standard form, with y′ as the first term, you see that

y′ − 1

x
y = −1

x
,

showing that the coefficient 1/x of y is infinite at x = 0.
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Theorems 1 and 2, pp. 39–40, concern initial value problems

y′ = f (x, y), y(x) = y0.

It is good to remember the two main facts:

1. Continuity of f (x, y) is enough to guarantee the existence of a solution of (1), but is not enough for
uniqueness (as is shown in Example 2 on p. 42).

2. Continuity of f and of its partial derivative with respect to y is enough to have uniqueness of the
solution of (1), p. 39.
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1. Linear ODE. In this case the solution is given by the integral formula (4) in Sec. 1.5, which
replaces the problem of solving an ODE by the simpler task of evaluating integrals – this is the point
of (4). Accordingly, we need only conditions under which the integrals in (4) exist. The continuity of
f and r are sufficient in this case.

3. Vertical strip as “rectangle.” In this case, since a is the smaller of the numbers a and b/K and K
is constant and b is no longer restricted, the answer |x − x0| < a given on p. A6 follows.


