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Chapter 1

Graphs, Functions, and Models

Exercise Set 1.1

1. Point A is located 5 units to the left of the y-axis and
4 units up from the x-axis, so its coordinates are (−5, 4).

Point B is located 2 units to the right of the y-axis and
2 units down from the x-axis, so its coordinates are (2,−2).

Point C is located 0 units to the right or left of the y-axis
and 5 units down from the x-axis, so its coordinates are
(0,−5).

Point D is located 3 units to the right of the y-axis and
5 units up from the x-axis, so its coordinates are (3, 5).

Point E is located 5 units to the left of the y-axis and
4 units down from the x-axis, so its coordinates are
(−5,−4).

Point F is located 3 units to the right of the y-axis and
0 units up or down from the x-axis, so its coordinates are
(3, 0).

2. G: (2, 1); H: (0, 0); I: (4,−3); J: (−4, 0); K: (−2, 3);
L: (0, 5)

3. To graph (4, 0) we move from the origin 4 units to the right
of the y-axis. Since the second coordinate is 0, we do not
move up or down from the x-axis.

To graph (−3,−5) we move from the origin 3 units to the
left of the y-axis. Then we move 5 units down from the
x-axis.

To graph (−1, 4) we move from the origin 1 unit to the left
of the y-axis. Then we move 4 units up from the x-axis.

To graph (0, 2) we do not move to the right or the left of
the y-axis since the first coordinate is 0. From the origin
we move 2 units up.

To graph (2,−2) we move from the origin 2 units to the
right of the y-axis. Then we move 2 units down from the
x-axis.

4.

5. To graph (−5, 1) we move from the origin 5 units to the
left of the y-axis. Then we move 1 unit up from the x-axis.

To graph (5, 1) we move from the origin 5 units to the right
of the y-axis. Then we move 1 unit up from the x-axis.

To graph (2, 3) we move from the origin 2 units to the right
of the y-axis. Then we move 3 units up from the x-axis.

To graph (2,−1) we move from the origin 2 units to the
right of the y-axis. Then we move 1 unit down from the
x-axis.

To graph (0, 1) we do not move to the right or the left of
the y-axis since the first coordinate is 0. From the origin
we move 1 unit up.

6.

7. The first coordinate represents the year and the corre-
sponding second coordinate represents the length of the
average spring break. The ordered pairs are (2002, 5.9),
(2003, 5.9), (2004, 5.8), (2005, 5.6), (2006, 5.2), and
(2007, 4.9).

8. The first coordinate represents the year and the corre-
sponding second coordinate represents total advertisement
spending, in millions of dollars. The ordered pairs are
(2000, 310.6), (2001, 311.2), (2002, 348.2), (2003, 361.6),
(2004, 435.8), and (2005, 467.7).
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9. To determine whether (−1,−9) is a solution, substitute
−1 for x and −9 for y.

y = 7x− 2

−9 ? 7(−1) − 2∣∣∣ −7 − 2
−9

∣∣ −9 TRUE

The equation −9 = −9 is true, so (−1,−9) is a solution.

To determine whether (0, 2) is a solution, substitute 0 for
x and 2 for y.

y = 7x− 2

2 ? 7 · 0 − 2∣∣∣ 0 − 2
2
∣∣ −2 FALSE

The equation 2 = −2 is false, so (0, 2) is not a solution.

10. For
(

1
2
, 8
)

: y = −4x + 10

8 ? −4 · 1
2

+ 10∣∣∣∣∣ −2 + 10
8
∣∣ 8 TRUE(

1
2
, 8
)

is a solution.

For (−1, 6): y = −4x + 10

6 ? −4(−1) + 10∣∣∣ 4 + 10
6
∣∣ 14 FALSE

(−1, 6) is not a solution.

11. To determine whether
(2

3
,
3
4

)
is a solution, substitute

2
3

for x and
3
4

for y.

6x− 4y = 1

6 · 2
3
− 4 · 3

4
? 1∣∣

4 − 3
∣∣∣

1
∣∣ 1 TRUE

The equation 1 = 1 is true, so
(2

3
,
3
4

)
is a solution.

To determine whether
(
1,

3
2

)
is a solution, substitute 1 for

x and
3
2

for y.

6x− 4y = 1

6 · 1 − 4 · 3
2

? 1∣∣
6 − 6

∣∣∣
0
∣∣ 1 FALSE

The equation 0 = 1 is false, so
(
1,

3
2

)
is not a solution.

12. For (1.5, 2.6): x2 + y2 = 9

(1.5)2 + (2.6)2 ? 9
2.25 + 6.76

∣∣∣
9.01

∣∣ 9 FALSE

(1.5, 2.6) is not a solution.

For (−3, 0): x2 + y2 = 9

(−3)2 + 02 ? 9
9 + 0

∣∣∣
9
∣∣ 9 TRUE

(−3, 0) is a solution.

13. To determine whether
(
− 1

2
,−4

5

)
is a solution, substitute

−1
2

for a and −4
5

for b.

2a + 5b = 3

2
(
− 1

2

)
+ 5
(
− 4

5

)
? 3∣∣

−1 − 4
∣∣∣

−5
∣∣ 3 FALSE

The equation −5 = 3 is false, so
(
− 1

2
,−4

5

)
is not a solu-

tion.

To determine whether
(
0,

3
5

)
is a solution, substitute 0 for

a and
3
5

for b.

2a + 5b = 3

2 · 0 + 5 · 3
5

? 3∣∣
0 + 3

∣∣∣
3
∣∣ 3 TRUE

The equation 3 = 3 is true, so
(
0,

3
5

)
is a solution.

14. For
(
0,

3
2

)
: 3m + 4n = 6

3 · 0 + 4 · 3
2

? 6∣∣
0 + 6

∣∣∣
6
∣∣ 6 TRUE(

0,
3
2

)
is a solution.

For
(2

3
, 1
)
: 3m + 4n = 6

3 · 2
3

+ 4 · 1 ? 6∣∣
2 + 4

∣∣∣
6
∣∣ 6 TRUE

The equation 6 = 6 is true, so
(2

3
, 1
)

is a solution.
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15. To determine whether (−0.75, 2.75) is a solution, substi-
tute −0.75 for x and 2.75 for y.

x2 − y2 = 3

(−0.75)2 − (2.75)2 ? 3
0.5625 − 7.5625

∣∣∣
−7

∣∣ 3 FALSE

The equation −7 = 3 is false, so (−0.75, 2.75) is not a
solution.

To determine whether (2,−1) is a solution, substitute 2
for x and −1 for y.

x2 − y2 = 3

22 − (−1)2 ? 3
4 − 1

∣∣∣
3
∣∣ 3 TRUE

The equation 3 = 3 is true, so (2,−1) is a solution.

16. For (2,−4): 5x + 2y2 = 70

5 · 2 + 2(−4)2 ? 70
10 + 2 · 16

∣∣∣
10 + 32

∣∣
42
∣∣ 70 FALSE

(2,−4) is not a solution.

For (4,−5): 5x + 2y2 = 70

5 · 4 + 2(−5)2 ? 70
20 + 2 · 25

∣∣∣
20 + 50

∣∣
70
∣∣ 70 TRUE

(4,−5) is a solution.

17. Graph 5x− 3y = −15.

To find the x-intercept we replace y with 0 and solve for
x.

5x− 3 · 0 = −15

5x = −15

x = −3

The x-intercept is (−3, 0).

To find the y-intercept we replace x with 0 and solve for
y.

5 · 0 − 3y = −15

−3y = −15

y = 5

The y-intercept is (0, 5).

We plot the intercepts and draw the line that contains
them. We could find a third point as a check that the
intercepts were found correctly.

18.

19. Graph 2x + y = 4.

To find the x-intercept we replace y with 0 and solve for
x.

2x + 0 = 4

2x = 4

x = 2

The x-intercept is (2, 0).

To find the y-intercept we replace x with 0 and solve for
y.

2 · 0 + y = 4

y = 4

The y-intercept is (0, 4).

We plot the intercepts and draw the line that contains
them. We could find a third point as a check that the
intercepts were found correctly.

20.
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21. Graph 4y − 3x = 12.

To find the x-intercept we replace y with 0 and solve for
x.

4 · 0 − 3x = 12

−3x = 12

x = −4

The x-intercept is (−4, 0).

To find the y-intercept we replace x with 0 and solve for
y.

4y − 3 · 0 = 12

4y = 12

y = 3

The y-intercept is (0, 3).

We plot the intercepts and draw the line that contains
them. We could find a third point as a check that the
intercepts were found correctly.

22.

23. Graph y = 3x + 5.

We choose some values for x and find the corresponding
y-values.

When x = −3, y = 3x + 5 = 3(−3) + 5 = −9 + 5 = −4.

When x = −1, y = 3x + 5 = 3(−1) + 5 = −3 + 5 = 2.

When x = 0, y = 3x + 5 = 3 · 0 + 5 = 0 + 5 = 5

We list these points in a table, plot them, and draw the
graph.

x y (x, y)

−3 −4 (−3,−4)

−1 2 (−1, 2)

0 5 (0, 5)

24.

25. Graph x− y = 3.

Make a table of values, plot the points in the table, and
draw the graph.

x y (x, y)

−2 −5 (−2,−5)

0 −3 (0,−3)

3 0 (3, 0)

26.

27. Graph y = −3
4
x + 3.

By choosing multiples of 4 for x, we can avoid fraction
values for y. Make a table of values, plot the points in the
table, and draw the graph.

x y (x, y)

−4 6 (−4, 6)

0 3 (0, 3)

4 0 (4, 0)
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28.

29. Graph 5x− 2y = 8.

We could solve for y first.

5x− 2y = 8

−2y = −5x + 8 Subtracting 5x on both sides

y =
5
2
x− 4 Multiplying by −1

2
on both

sides

By choosing multiples of 2 for x we can avoid fraction
values for y. Make a table of values, plot the points in the
table, and draw the graph.

x y (x, y)

0 −4 (0,−4)

2 1 (2, 1)

4 6 (4, 6)

30.

31. Graph x− 4y = 5.
Make a table of values, plot the points in the table, and
draw the graph.

x y (x, y)

−3 −2 (−3,−2)

1 −1 (1,−1)

5 0 (5, 0)

32.

33. Graph 2x + 5y = −10.
In this case, it is convenient to find the intercepts along
with a third point on the graph. Make a table of values,
plot the points in the table, and draw the graph.

x y (x, y)

−5 0 (−5, 0)

0 −2 (0,−2)

5 −4 (5,−4)

34.
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35. Graph y = −x2.

Make a table of values, plot the points in the table, and
draw the graph.

x y (x, y)

−2 −4 (−2,−4)

−1 −1 (−1,−1)

0 0 (0, 0)

1 −1 (1,−1)

2 −4 (2,−4)

36.

37. Graph y = x2 − 3.

Make a table of values, plot the points in the table, and
draw the graph.

x y (x, y)

−3 6 (−3, 6)

−1 −2 (−1,−2)

0 −3 (0,−3)

1 −2 (1,−2)

3 6 (3, 6)

38.

39. Graph y = −x2 + 2x + 3.

Make a table of values, plot the points in the table, and
draw the graph.

x y (x, y)

−2 −5 (−2,−5)

−1 0 (−1, 0)

0 3 (0, 3)

1 4 (1, 4)

2 3 (2, 3)

3 0 (3, 0)

4 −5 (4,−5)

40.

41. Graph (b) is the graph of y = 3 − x.

42. Graph (d) is the graph of 2x− y = 6.

43. Graph (a) is the graph of y = x2 + 2x + 1.

44. Graph (c) is the graph of y = 8 − x2.
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45. Enter the equation, select the standard window, and graph
the equation as described in the Graphing Calculator Man-
ual that accompanies the text.

46.

47. First solve the equation for y: y = −4x + 7. Enter the
equation in this form, select the standard window, and
graph the equation as described in the Graphing Calcula-
tor Manual that accompanies the text.

48. 5x + y = −8, so y = −5x− 8.

49. Enter the equation, select the standard window, and graph
the equation as described in the Graphing Calculator Man-
ual that accompanies the text.

50.

51. First solve the equation for y.

2x + 3y = −5

3y = −2x− 5

y =
−2x− 5

3
, or

1
3
(−2x− 5)

Enter the equation in “y =” form, select the standard win-
dow, and graph the equation as described in the Graphing
Calculator Manual that accompanies the text.

52. 3x + 4y = 1, so y =
−3x + 1

4
, or y = −3

4
x +

1
4

53. Enter the equation, select the standard window, and graph
the equation as described in the Graphing Calculator Man-
ual that accompanies the text.

54.
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55. Enter the equation, select the standard window, and graph
the equation as described in the Graphing Calculator Man-
ual that accompanies the text.

56.

57. Enter the equation, select the standard window, and graph
the equation as described in the Graphing Calculator Man-
ual that accompanies the text.

58.

59. Standard window:

[−4, 4,−4, 4]

We see that the standard window is a better choice for this
graph.

60. Standard window:

[−15, 15,−10, 30], Xscl = 3, Yscl = 5

We see that [−15, 15,−10, 30] is a better choice for this
graph.

61. Standard window:

[−1, 1,−0.3, 0.3], Xscl = 0.1, Yscl = 0.1

We see that [−1, 1,−0.3, 0.3] is a better choice for this
graph.
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62. Standard window:

[−3, 3,−3, 3]

We see that the standard window is a better choice for this
graph.

63. Either point can be considered as (x1, y1).

d =
√

(4 − 5)2 + (6 − 9)2

=
√

(−1)2 + (−3)2 =
√

10 ≈ 3.162

64. d =
√

(−3 − 2)2 + (7 − 11)2 =
√

41 ≈ 6.403

65. Either point can be considered as (x1, y1).

d =
√

(−13 − (−8))2 + (1 − (−11))2

=
√

(−5)2 + 122 =
√

169 = 13

66. d =
√

(−20 − (−60))2 + (35 − 5)2 =
√

2500 = 50

67. Either point can be considered as (x1, y1).

d =
√

(6 − 9)2 + (−1 − 5)2

=
√

(−3)2 + (−6)2 =
√

45 ≈ 6.708

68. d =
√

(−4 − (−1))2 + (−7 − 3)2 =
√

109 ≈ 10.440

69. Either point can be considered as (x1, y1).

d =

√
(−8 − 8)2 +

(
7
11

− 7
11

)2

=
√

(−16)2 + 02 = 16

70. d=

√(
1
2
− 1

2

)2

+
(
− 4

25
−
(
− 13

25

))2

=

√(
9
25

)2

=
9
25

71. d =

√[
− 3

5
−
(
− 3

5

)]2
+
(
− 4 − 2

3

)2

=

√
02 +

(
− 14

3

)2

=
14
3

72. d=

√(
− 11

3
− 1

3

)2

+
(
− 1

2
− 5

2

)2

=
√

16 + 9=
√

25 = 5

73. Either point can be considered as (x1, y1).

d =
√

(−4.2 − 2.1)2 + [3 − (−6.4)]2

=
√

(−6.3)2 + (9.4)2 =
√

128.05 ≈ 11.316

74. d =
√

[0.6 − (−8.1)]2 + [−1.5 − (−1.5)]2 =√
(8.7)2 = 8.7

75. Either point can be considered as (x1, y1).

d =
√

(0 − a)2 + (0 − b)2 =
√
a2 + b2

76. d =
√

[r − (−r)]2 + [s− (−s)]2 =
√

4r2 + 4s2 =

2
√
r2 + s2

77. First we find the length of the diameter:

d =
√

(−3 − 9)2 + (−1 − 4)2

=
√

(−12)2 + (−5)2 =
√

169 = 13

The length of the radius is one-half the length of the di-

ameter, or
1
2
(13), or 6.5.

78. Radius =
√

(−3 − 0)2 + (5 − 1)2 =
√

25 = 5

Diameter = 2 · 5 = 10

79. First we find the distance between each pair of points.

For (−4, 5) and (6, 1):

d =
√

(−4 − 6)2 + (5 − 1)2

=
√

(−10)2 + 42 =
√

116

For (−4, 5) and (−8,−5):

d =
√

(−4 − (−8))2 + (5 − (−5))2

=
√

42 + 102 =
√

116

For (6, 1) and (−8,−5):

d =
√

(6 − (−8))2 + (1 − (−5))2

=
√

142 + 62 =
√

232

Since (
√

116)2 + (
√

116)2 = (
√

232)2, the points could be
the vertices of a right triangle.

80. For (−3, 1) and (2,−1):

d =
√

(−3 − 2)2 + (1 − (−1))2 =
√

29

For (−3, 1) and (6, 9):

d =
√

(−3 − 6)2 + (1 − 9)2 =
√

145

For (2,−1) and (6, 9):

d =
√

(2 − 6)2 + (−1 − 9)2 =
√

116

Since (
√

29)2 + (
√

116)2 = (
√

145)2, the points could be
the vertices of a right triangle.

81. First we find the distance between each pair of points.

For (−4, 3) and (0, 5):

d =
√

(−4 − 0)2 + (3 − 5)2

=
√

(−4)2 + (−2)2 =
√

20

For (−4, 3) and (3,−4):

d =
√

(−4 − 3)2 + [3 − (−4)]2

=
√

(−7)2 + 72 =
√

98
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For (0, 5) and (3,−4):

d =
√

(0 − 3)2 + [5 − (−4)]2

=
√

(−3)2 + 92 =
√

90

The greatest distance is
√

98, so if the points are the ver-
tices of a right triangle, then it is the hypotenuse. But
(
√

20)2 + (
√

90)2 �= (
√

98)2, so the points are not the ver-
tices of a right triangle.

82. See the graph of this rectangle in Exercise 93.

The segments with endpoints (−3, 4), (2,−1) and (5, 2),
(0, 7) are one pair of opposite sides. We find the length of
each of these sides.

For (−3, 4), (2,−1):

d =
√

(−3 − 2)2 + (4 − (−1))2 =
√

50

For (5, 2), (0, 7):

d =
√

(5 − 0)2 + (2 − 7)2 =
√

50

The segments with endpoints (2,−1), (5, 2) and (0, 7),
(−3, 4) are the second pair of opposite sides. We find their
lengths.

For (2,−1), (5, 2):

d =
√

(2 − 5)2 + (−1 − 2)2 =
√

18

For (0, 7), (−3, 4):

d =
√

(0 − (−3))2 + (7 − 4)2 =
√

18

The endpoints of the diagonals are (−3, 4), (5, 2) and
(2,−1), (0, 7). We find the length of each.

For (−3, 4), (5, 2):

d =
√

(−3 − 5)2 + (4 − 2)2 =
√

68

For (2,−1), (0, 7):

d =
√

(2 − 0)2 + (−1 − 7)2 =
√

68

The opposite sides of the quadrilateral are the same length
and the diagonals are the same length, so the quadrilateral
is a rectangle.

83. We use the midpoint formula.(
4 + (−12)

2
,
−9 + (−3)

2

)
=
(
− 8

2
,−12

2

)
= (−4,−6)

84.
(

7 + 9
2

,
−2 + 5

2

)
=
(

8,
3
2

)

85. We use the midpoint formula.

(0 +
(
− 2

5

)
2

,

1
2
− 0

2

)
=

(−2
5

2
,

1
2
2

)
=
(
− 1

5
,
1
4

)

86.

(0 +
(
− 7

13

)
2

,
0 +

2
7

2

)
=
(
− 7

26
,
1
7

)

87. We use the midpoint formula.(
6.1 + 3.8

2
,
−3.8 + (−6.1)

2

)
=
(

9.9
2

,−9.9
2

)
=

(4.95,−4.95)

88.
(−0.5 + 4.8

2
,
−2.7 + (−0.3)

2

)
= (2.15,−1.5)

89. We use the midpoint formula.(−6 + (−6)
2

,
5 + 8

2

)
=
(
− 12

2
,
13
2

)
=
(
− 6,

13
2

)

90.
(

1 + (−1)
2

,
−2 + 2

2

)
= (0, 0)

91. We use the midpoint formula.(−1
6

+
(
− 2

3

)
2

,
−3

5
+

5
4

2

)
=

(−5
6

2
,

13
20
2

)
=

(
− 5

12
,
13
40

)

92.

( 2
9

+
(
− 2

5

)
2

,

1
3

+
4
5

2

)
=
(
− 4

45
,
17
30

)

93.
8

6

4

2

�2

4 6�2�4 x

y

For the side with vertices (−3, 4) and (2,−1):(−3 + 2
2

,
4 + (−1)

2

)
=
(
− 1

2
,
3
2

)
For the side with vertices (2,−1) and (5, 2):(

2 + 5
2

,
−1 + 2

2

)
=
(

7
2
,
1
2

)
For the side with vertices (5, 2) and (0, 7):(

5 + 0
2

,
2 + 7

2

)
=
(

5
2
,
9
2

)
For the side with vertices (0, 7) and (−3, 4):(

0 + (−3)
2

,
7 + 4

2

)
=
(
− 3

2
,
11
2

)
For the quadrilateral whose vertices are the points found
above, the diagonals have endpoints(
− 1

2
,
3
2

)
,
(

5
2
,
9
2

)
and

(
7
2
,
1
2

)
,
(
− 3

2
,
11
2

)
.

We find the length of each of these diagonals.

For
(
− 1

2
,
3
2

)
,
(

5
2
,
9
2

)
:

d =

√(
− 1

2
− 5

2

)2

+
(

3
2
− 9

2

)2

=
√

(−3)2 + (−3)2 =
√

18

For
(

7
2
,
1
2

)
,
(
− 3

2
,
11
2

)
:

d =

√(
7
2
−
(
− 3

2

))2

+
(

1
2
− 11

2

)2

=
√

52 + (−5)2 =
√

50
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Since the diagonals do not have the same lengths, the mid-
points are not vertices of a rectangle.

94.

For the side with vertices (−5,−1) and (7,−6):(−5 + 7
2

,
−1 + (−6)

2

)
=
(

1,−7
2

)
For the side with vertices (7,−6) and (12, 6):(

7 + 12
2

,
−6 + 6

2

)
=
(

19
2
, 0
)

For the side with vertices (12, 6) and (0, 11):(
12 + 0

2
,
6 + 11

2

)
=
(

6,
17
2

)
For the side with vertices (0, 11) and (−5,−1):(

0 + (−5)
2

,
11 + (−1)

2

)
=
(
− 5

2
, 5
)

For the quadrilateral whose vertices are the points found

above, one pair of opposite sides has endpoints
(

1,−7
2

)
,(

19
2
, 0
)

and
(

6,
17
2

)
,

(
− 5

2
, 5
)

. The length of each of

these sides is
√

338
2

. The other pair of opposite sides has

endpoints
(

19
2
, 0
)
,

(
6,

17
2

)
and

(
− 5

2
, 5
)
,

(
1,−7

2

)
.

The length of each of these sides is also
√

338
2

. The end-

points of the diagonals of the quadrilateral are
(

1,−7
2

)
,(

6,
17
2

)
and

(
19
2
, 0
)
,

(
− 5

2
, 5
)

. The length of each di-

agonal is 13. Since the four sides of the quadrilateral are
the same length and the diagonals are the same length, the
midpoints are vertices of a square.

95. We use the midpoint formula.(√
7 +

√
2

2
,
−4 + 3

2

)
=
(√

7 +
√

2
2

,−1
2

)

96.
(−3 + 1

2
,

√
5 +

√
2

2

)
=
(
− 1,

√
5 +

√
2

2

)

97. Square the viewing window. For the graph shown, one
possibility is [−12, 9,−4, 10].

98. Square the viewing window. For the graph shown, one
possibility is [−10, 20,−15, 5].

99. (x− h)2 + (y − k)2 = r2

(x− 2)2 + (y − 3)2 =
(

5
3

)2

Substituting

(x− 2)2 + (y − 3)2 =
25
9

100. (x− 4)2 + (y − 5)2 = (4.1)2

(x− 4)2 + (y − 5)2 = 16.81

101. The length of a radius is the distance between (−1, 4) and
(3, 7):

r =
√

(−1 − 3)2 + (4 − 7)2

=
√

(−4)2 + (−3)2 =
√

25 = 5

(x− h)2 + (y − k)2 = r2

[x− (−1)]2 + (y − 4)2 = 52

(x + 1)2 + (y − 4)2 = 25

102. Find the length of a radius:

r =
√

(6 − 1)2 + (−5 − 7)2 =
√

169 = 13

(x− 6)2 + [y − (−5)]2 = 132

(x− 6)2 + (y + 5)2 = 169

103. The center is the midpoint of the diameter:(
7 + (−3)

2
,
13 + (−11)

2

)
= (2, 1)

Use the center and either endpoint of the diameter to find
the length of a radius. We use the point (7, 13):

r =
√

(7 − 2)2 + (13 − 1)2

=
√

52 + 122 =
√

169 = 13

(x− h)2 + (y − k)2 = r2

(x− 2)2 + (y − 1)2 = 132

(x− 2)2 + (y − 1)2 = 169

104. The points (−9, 4) and (−1,−2) are opposite vertices of
the square and hence endpoints of a diameter of the circle.
We use these points to find the center and radius.

Center:
(−9 + (−1)

2
,
4 + (−2)

2

)
= (−5, 1)

Radius:
1
2

√
(−9−(−1))2+(4−(−2))2 =

1
2
·10 = 5

[x− (−5)]2 + (y − 1)2 = 52

(x + 5)2 + (y − 1)2 = 25

105. Since the center is 2 units to the left of the y-axis and the
circle is tangent to the y-axis, the length of a radius is 2.

(x− h)2 + (y − k)2 = r2

[x− (−2)]2 + (y − 3)2 = 22

(x + 2)2 + (y − 3)2 = 4

106. Since the center is 5 units below the x-axis and the circle
is tangent to the x-axis, the length of a radius is 5.

(x− 4)2 + [y − (−5)]2 = 52

(x− 4)2 + (y + 5)2 = 25
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107. x2 + y2 = 4

(x− 0)2 + (y − 0)2 = 22

Center: (0, 0); radius: 2

108. x2 + y2 = 81

(x− 0)2 + (y − 0)2 = 92

Center: (0, 0); radius: 9

109. x2 + (y − 3)2 = 16

(x− 0)2 + (y − 3)2 = 42

Center: (0, 3); radius: 4

110. (x + 2)2 + y2 = 100

[x− (−2)]2 + (y − 0)2 = 102

Center: (−2, 0); radius: 10

111. (x− 1)2 + (y − 5)2 = 36

(x− 1)2 + (y − 5)2 = 62

Center: (1, 5); radius: 6

112. (x− 7)2 + (y + 2)2 = 25

(x− 7)2 + [y − (−2)]2 = 52

Center: (7,−2); radius: 5
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113. (x + 4)2 + (y + 5)2 = 9

[x− (−4)]2 + [y − (−5)]2 = 32

Center: (−4,−5); radius: 3

114. (x + 1)2 + (y − 2)2 = 64

[x− (−1)]2 + (y − 2)2 = 82

Center: (−1, 2); radius: 8

115. From the graph we see that the center of the circle is
(−2, 1) and the radius is 3. The equation of the circle
is [x− (−2)]2 + (y − 1)2 = 32, or (x+ 2)2 + (y − 1)2 = 32.

116. Center: (3,−5), radius: 4

Equation: (x− 3)2 + [y − (−5)]2 = 42, or

(x− 3)2 + (y + 5)2 = 42

117. From the graph we see that the center of the circle is
(5,−5) and the radius is 15. The equation of the circle
is (x−5)2 +[y− (−5)]2 = 152, or (x−5)2 +(y+5)2 = 152.

118. Center: (−8, 2), radius: 4

Equation: [x− (−8)]2 + (y − 2)2 = 42, or

(x + 8)2 + (y − 2)2 = 42

119. The Pythagorean theorem is used to derive the distance
formula, and the distance formula is used to derive the
equation of a circle in standard form.

120. Let A = (a, b) and B = (c, d). The coordinates of a point

C one-half of the way from A to B are
(
a + c

2
,
b + d

2

)
.

A point D that is one-half of the way from C to B is
1
2

+
1
2
· 1
2
, or

3
4

of the way from A to B. Its coordinates

are
( a+c

2 + c

2
,
b+d
2 + d

2

)
, or

(
a + 3c

4
,
b + 3d

4

)
. Then a

point E that is one-half of the way from D to B is
3
4

+
1
2
· 1
4
, or

7
8

of the way from A to B. Its coordinates

are
( a+3c

4 + c

2
,
b+3d

4 + d

2

)
, or

(
a + 7c

8
,
b + 7d

8

)
.

121. If the point (p, q) is in the fourth quadrant, then p > 0
and q < 0. If p > 0, then −p < 0 so both coordinates of
the point (q,−p) are negative and (q,−p) is in the third
quadrant.

122. Use the distance formula:

d =

√
(a + h− a)2 +

(
1

a + h
− 1

a

)2

=

√
h2 +

( −h

a(a + h)

)2

=

√
h2 +

h2

a2(a + h)2
=

√
h2a2(a + h)2 + h2

a2(a + h)2
=

√
h2(a2(a + h)2 + 1)

a2(a + h)2
=∣∣∣∣∣ h

a(a + h)

∣∣∣∣∣
√

a2(a + h)2 + 1

Find the midpoint:(
a + a + h

2
,

1
a + 1

a+h

2

)
=
(

2a + h

2
,

2a + h

2a(a + h)

)

123. Use the distance formula. Either point can be considered
as (x1, y1).

d =
√

(a + h− a)2 + (
√
a + h−√

a)2

=
√

h2 + a + h− 2
√
a2 + ah + a

=
√

h2 + 2a + h− 2
√
a2 + ah

Next we use the midpoint formula.(
a+a+h

2
,

√
a+

√
a+h

2

)
=
(

2a+h

2
,

√
a+

√
a+h

2

)

124. C = 2πr

10π = 2πr

5 = r

Then [x−(−5)]2+(y−8)2 = 52, or (x+5)2+(y−8)2 = 25.

125. First use the formula for the area of a circle to find r2:
A = πr2

36π = πr2

36 = r2

Then we have:
(x− h)2 + (y − k)2 = r2

(x− 2)2 + [y − (−7)]2 = 36

(x− 2)2 + (y + 7)2 = 36

126. Let the point be (x, 0). We set the distance from (−4,−3)
to (x, 0) equal to the distance from (−1, 5) to (x, 0) and
solve for x.
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√
(−4 − x)2 + (−3 − 0)2 =

√
(−1 − x)2 + (5 − 0)2√

16 + 8x + x2 + 9 =
√

1 + 2x + x2 + 25√
x2 + 8x + 25 =

√
x2 + 2x + 26

x2 + 8x + 25 = x2 + 2x + 26
Squaring both sides

8x + 25 = 2x + 26

6x = 1

x =
1
6

The point is
(

1
6
, 0
)

.

127. Let (0, y) be the required point. We set the distance from
(−2, 0) to (0, y) equal to the distance from (4, 6) to (0, y)
and solve for y.√

[0 − (−2)]2 + (y − 0)2 =
√

(0 − 4)2 + (y − 6)2√
4 + y2 =

√
16 + y2 − 12y + 36

4 + y2 = 16 + y2 − 12y + 36
Squaring both sides

−48 = −12y

4 = y

The point is (0, 4).

128. We first find the distance between each pair of points.

For (−1,−3) and (−4,−9):

d1 =
√

[−1 − (−4)]2 + [−3 − (−9)]2

=
√

32 + 62 =
√

9 + 36

=
√

45 = 3
√

5

For (−1,−3) and (2, 3):

d2 =
√

(−1 − 2)2 + (−3 − 3)2

=
√

(−3)2 + (−6)2 =
√

9 + 36

=
√

45 = 3
√

5

For (−4,−9) and (2, 3):

d3 =
√

(−4 − 2)2 + (−9 − 3)2

=
√

(−6)2 + (−12)2 =
√

36 + 144

=
√

180 = 6
√

5

Since d1 + d2 = d3, the points are collinear.

129. Label the drawing with additional information and letter-
ing.

Find b using the Pythagorean theorem.

b2 + 102 = 202

b2 + 100 = 400

b2 = 300

b = 10
√

3

b ≈ 17.3

Find a1:

a1 = 20 − b ≈ 20 − 17.3 ≈ 2.7 ft

Find a2:

a2 = 2b + a1 ≈ 2(17.3) + 2.7 ≈ 37.3 ft

130. a) When the circle is positioned on a coordinate system
as shown in the text, the center lies on the y-axis
and is equidistant from (−4, 0) and (0, 2).

Let (0, y) be the coordinates of the center.√
(−4−0)2+(0−y)2 =

√
(0−0)2+(2−y)2

42 + y2 = (2 − y)2

16 + y2 = 4 − 4y + y2

12 = −4y

−3 = y

The center of the circle is (0,−3).

b) Use the point (−4, 0) and the center (0,−3) to find
the radius.

(−4 − 0)2 + [0 − (−3)]2 = r2

25 = r2

5 = r

The radius is 5 ft.

131. x2 + y2 = 1(√
3

2

)2

+
(
− 1

2

)2

? 1∣∣
3
4

+
1
4

∣∣∣∣∣
1
∣∣ 1 TRUE(√

3
2

,−1
2

)
lies on the unit circle.

132. x2 + y2 = 1

02 + (−1)2 ? 1
1
∣∣ 1 TRUE

(0,−1) lies on the unit circle.

133. x2 + y2 = 1(√
2

2

)2

+
(√

2
2

)2

? 1∣∣
2
4

+
2
4

∣∣∣∣∣
1
∣∣ 1 TRUE(√

2
2

,

√
2

2

)
lies on the unit circle.
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134. x2 + y2 = 1(
1
2

)2

+
(
−

√
3

2

)2

? 1∣∣
1
4

+
3
4

∣∣∣∣∣
1
∣∣ 1 TRUE(

1
2
,−

√
3

2

)
lies on the unit circle.

135. a), b) See the answer section in the text.

136. The coordinates of P are
(
b

2
,
h

2

)
by the midpoint formula.

By the distance formula, each of the distances from P to

(0, h), from P to (0, 0), and from P to (b, 0) is
√
b2 + h2

2
.

Exercise Set 1.2

1. This correspondence is a function, because each member
of the domain corresponds to exactly one member of the
range.

2. This correspondence is a function, because each member
of the domain corresponds to exactly one member of the
range.

3. This correspondence is a function, because each member
of the domain corresponds to exactly one member of the
range.

4. This correspondence is not a function, because there is a
member of the domain (1) that corresponds to more than
one member of the range (4 and 6).

5. This correspondence is not a function, because there is a
member of the domain (m) that corresponds to more than
one member of the range (A and B).

6. This correspondence is a function, because each member
of the domain corresponds to exactly one member of the
range.

7. This correspondence is a function, because each member
of the domain corresponds to exactly one member of the
range.

8. This correspondence is a function, because each member
of the domain corresponds to exactly one member of the
range.

9. This correspondence is a function, because each car has
exactly one license number.

10. This correspondence is not a function, because we can
safely assume that at least one person uses more than one
doctor.

11. This correspondence is a function, because each member
of the family has exactly one eye color.

12. This correspondence is not a function, because we can
safely assume that at least one band member plays more
than one instrument.

13. This correspondence is not a function, because at least one
student will have more than one neighboring seat occupied
by another student.

14. This correspondence is a function, because each bag has
exactly one weight.

15. The relation is a function, because no two ordered pairs
have the same first coordinate and different second coor-
dinates.

The domain is the set of all first coordinates:
{2, 3, 4}.
The range is the set of all second coordinates: {10, 15, 20}.

16. The relation is a function, because no two ordered pairs
have the same first coordinate and different second coor-
dinates.

Domain: {3, 5, 7}
Range: {1}

17. The relation is not a function, because the ordered pairs
(−2, 1) and (−2, 4) have the same first coordinate and dif-
ferent second coordinates.

The domain is the set of all first coordinates:
{−7,−2, 0}.
The range is the set of all second coordinates: {3, 1, 4, 7}.

18. The relation is not a function, because each of the ordered
pairs has the same first coordinate and different second
coordinates.

Domain: {1}
Range: {3, 5, 7, 9}

19. The relation is a function, because no two ordered pairs
have the same first coordinate and different second coor-
dinates.

The domain is the set of all first coordinates:
{−2, 0, 2, 4,−3}.
The range is the set of all second coordinates: {1}.

20. The relation is not a function, because the ordered pairs
(5, 0) and (5,−1) have the same first coordinates and dif-
ferent second coordinates. This is also true of the pairs
(3,−1) and (3,−2).

Domain: {5, 3, 0}
Range: {0,−1,−2}

21. g(x) = 3x2 − 2x + 1

a) g(0) = 3 · 02 − 2 · 0 + 1 = 1

b) g(−1) = 3(−1)2 − 2(−1) + 1 = 6

c) g(3) = 3 · 32 − 2 · 3 + 1 = 22

d) g(−x) = 3(−x)2 − 2(−x) + 1 = 3x2 + 2x + 1

e) g(1 − t) = 3(1 − t)2 − 2(1 − t) + 1 =

3(1−2t+t2)−2(1−t)+1 = 3−6t+3t2−2+2t+1 =

3t2 − 4t + 2
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22. f(x) = 5x2 + 4x

a) f(0) = 5 · 02 + 4 · 0 = 0 + 0 = 0

b) f(−1) = 5(−1)2 + 4(−1) = 5 − 4 = 1

c) f(3) = 5 · 32 + 4 · 3 = 45 + 12 = 57

d) f(t) = 5t2 + 4t

e) f(t− 1) = 5(t− 1)2 + 4(t− 1) = 5t2 − 6t + 1

23. g(x) = x3

a) g(2) = 23 = 8

b) g(−2) = (−2)3 = −8

c) g(−x) = (−x)3 = −x3

d) g(3y) = (3y)3 = 27y3

e) g(2 + h) = (2 + h)3 = 8 + 12h + 6h2 + h3

24. f(x) = 2|x| + 3x

a) f(1) = 2|1| + 3 · 1 = 2 + 3 = 5

b) f(−2) = 2| − 2| + 3(−2) = 4 − 6 = −2

c) f(−x) = 2| − x| + 3(−x) = 2|x| − 3x

d) f(2y) = 2|2y| + 3 · 2y = 4|y| + 6y

e) f(2 − h) = 2|2 − h| + 3(2 − h) =

2|2 − h| + 6 − 3h

25. g(x) =
x− 4
x + 3

a) g(5) =
5 − 4
5 + 3

=
1
8

b) g(4) =
4 − 4
4 + 7

= 0

c) g(−3) =
−3 − 4
−3 + 3

=
−7
0

Since division by 0 is not defined, g(−3) does not
exist.

d) g(−16.25) =
−16.25 − 4
−16.25 + 3

=
−20.25
−13.25

=
81
53

≈ 1.5283

e) g(x + h) =
x + h− 4
x + h + 3

26. f(x) =
x

2 − x

a) f(2) =
2

2 − 2
=

2
0

Since division by 0 is not defined, f(2) does not
exist.

b) f(1) =
1

2 − 1
= 1

c) f(−16) =
−16

2 − (−16)
=

−16
18

= −8
9

d) f(−x) =
−x

2 − (−x)
=

−x

2 + x

e) f

(
− 2

3

)
=

−2
3

2 −
(
− 2

3

) =
−2

3
8
3

= −1
4

27. g(x) =
x√

1 − x2

g(0) =
0√

1 − 02
=

0√
1

=
0
1

= 0

g(−1) =
−1√

1 − (−1)2
=

−1√
1 − 1

=
−1√

0
=

−1
0

Since division by 0 is not defined, g(−1) does not exist.

g(5) =
5√

1 − 52
=

5√
1 − 25

=
5√−24

Since
√−24 is not defined as a real number, g(5) does not

exist as a real number.

g

(
1
2

)
=

1
2√

1 −
(

1
2

)2
=

1
2√

1 − 1
4

=

1
2√
3
4

=

1
2√
3

2

=
1
2
· 2√

3
=

1 · 2
2
√

3
=

1√
3
, or

√
3

3

28. h(x) = x +
√
x2 − 1

h(0) = 0 +
√

02 − 1 = 0 +
√−1

Since
√−1 is not defined as a real number, h(0) does not

exist as a real number.
h(2) = 2 +

√
22 − 1 = 2 +

√
3

h(−x) = −x +
√

(−x)2 − 1 = −x +
√
x2 − 1

29.

Rounding to the nearest tenth, we see that g(−2.1) ≈
−21.8, g(5.08) ≈ −130.4, and g(10.003) ≈ −468.3.

30.

We see that h(−11) = 57, 885, h(7) = 4017, and h(15) =
119, 241.

31. Graph f(x) =
1
2
x + 3.

We select values for x and find the corresponding values
of f(x). Then we plot the points and connect them with
a smooth curve.

x f(x) (x, f(x))

−4 1 (−4, 1)

0 3 (0, 3)

2 4 (2, 4)
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32.

33. Graph f(x) = −x2 + 4.

We select values for x and find the corresponding values
of f(x). Then we plot the points and connect them with
a smooth curve.

x f(x) (x, f(x))

−3 −5 (−3,−5)

−2 0 (−2, 0)

−1 3 (−1, 3)

0 4 (0, 4)

1 3 (1, 3)

2 0 (2, 0)

3 −5 (3,−5)

34.

35. Graph f(x) =
√
x− 1.

We select values for x and find the corresponding values
of f(x). Then we plot the points and connect them with
a smooth curve.

x f(x) (x, f(x))

1 0 (1, 0)

2 1 (2, 1)

4 1.7 (4, 1.7)

5 2 (5, 2)

36.

37. From the graph we see that, when the input is 1, the output
is −2, so h(1) = −2. When the input is 3, the output is
2, so h(3) = 2. When the input is 4, the output is 1, so
h(4) = 1.

38. t(−4) = 3; t(0) = 3; t(3) = 3

39. From the graph we see that, when the input is −4, the
output is 3, so s(−4) = 3. When the input is −2, the
output is 0, so s(−2) = 0. When the input is 0, the output
is −3, so s(0) = −3.

40. g(−4) =
3
2
; g(−1) = −3; g(0) = −5

2

41. From the graph we see that, when the input is −1, the
output is 2, so f(−1) = 2. When the input is 0, the output
is 0, so f(0) = 0. When the input is 1, the output is −2,
so f(1) = −2.

42. g(−2) = 4; g(0) = −4; g(2.4) = −2.6176

43. This is not the graph of a function, because we can find a
vertical line that crosses the graph more than once.
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44. This is not the graph of a function, because we can find a
vertical line that crosses the graph more than once.

45. This is the graph of a function, because there is no vertical
line that crosses the graph more than once.

46. This is the graph of a function, because there is no vertical
line that crosses the graph more than once.

47. This is the graph of a function, because there is no vertical
line that crosses the graph more than once.

48. This is the graph of a function, because there is no vertical
line that crosses the graph more than once.

49. This is not the graph of a function, because we can find a
vertical line that crosses the graph more than once.

50. This is not the graph of a function, because we can find a
vertical line that crosses the graph more than once.

51. We can substitute any real number for x. Thus, the do-
main is the set of all real numbers, or (−∞,∞).

52. We can substitute any real number for x. Thus, the do-
main is the set of all real numbers, or (−∞,∞).

53. We can substitute any real number for x. Thus, the do-
main is the set of all real numbers, or (−∞,∞).

54. The input 0 results in a denominator of 0. Thus, the do-
main is {x|x 	= 0}, or (−∞, 0) ∪ (0,∞).

55. The input 0 results in a denominator of 0. Thus, the do-
main is {x|x 	= 0}, or (−∞, 0) ∪ (0,∞).

56. We can substitute any real number for x. Thus, the do-
main is the set of all real numbers, or (−∞,∞).

57. We can substitute any real number in the numerator, but
we must avoid inputs that make the denominator 0. We
find these inputs.

2 − x = 0

2 = x

The domain is {x|x 	= 2}, or (−∞, 2) ∪ (2,∞).

58. We find the inputs that make the denominator 0:

x + 4 = 0

x = −4

The domain is {x|x 	= −4}, or (−∞,−4) ∪ (−4,∞).

59. We find the inputs that make the denominator 0:

x2 − 4x− 5 = 0

(x− 5)(x + 1) = 0

x− 5 = 0 or x + 1 = 0

x = 5 or x = −1

The domain is {x|x 	= 5 and x 	= −1}, or
(−∞,−1) ∪ (−1, 5) ∪ (5,∞).

60. We can substitute any real number in the numerator, but
the input 0 makes the denominator 0. Thus, the domain
is {x|x 	= 0}, or (−∞, 0) ∪ (0,∞).

61. We can substitute any real number in the numerator, but
we must avoid inputs that make the denominator 0. We
find these inputs.

x2 − 7x = 0

x(x− 7) = 0

x = 0 or x− 7 = 0

x = 0 or x = 7

The domain is {x|x 	= 0 and x 	= 7}, or (−∞, 0) ∪ (0, 7) ∪
(7,∞).

62. We can substitute any real number in the numerator, but
we must avoid inputs that make the denominator 0. We
find these inputs.

3x2 − 10x− 8 = 0

(3x + 2)(x− 4) = 0

3x + 2 = 0 or x− 4 = 0

3x = −2 or x = 4

x = −2
3
or x = 4

The domain is
{
x

∣∣∣∣x 	= −2
3
and x 	= 4

}
, or(

−∞,−2
3

)
∪
(
− 2

3
, 4
)
∪ (4,∞).

63. We can substitute any real number for x. Thus, the do-
main is the set of all real numbers, or (−∞,∞).
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64. We can substitute any real number for x. Thus, the do-
main is the set of all real numbers, or (−∞,∞).

65. The inputs on the x-axis that correspond to points on the
graph extend from 0 to 5, inclusive. Thus, the domain is
{x|0 ≤ x ≤ 5}, or [0, 5].

The outputs on the y-axis extend from 0 to 3, inclusive.
Thus, the range is {y|0 ≤ y ≤ 3}, or [0, 3].

66. The inputs on the x-axis that correspond to points on the
graph extend from −3 up to but not including 5. Thus,
the domain is {x| − 3 ≤ x < 5}, or [−3, 5).

The outputs on the y-axis extend from −4 up to but not
including 1. Thus, the range is {y|−4 ≤ y < 1}, or [−4, 1).

67. The inputs on the x-axis that correspond to points on the
graph extend from −2π to 2π inclusive. Thus, the domain
is {x| − 2π ≤ x ≤ 2π}, or [−2π, 2π].

The outputs on the y-axis extend from −1 to 1, inclusive.
Thus, the range is {y| − 1 ≤ y ≤ 1}, or [−1, 1].

68. The inputs on the x-axis that correspond to points on the
graph extend from −2 to 1, inclusive. Thus, the domain is
{x| − 2 ≤ x ≤ 1}, or [−2, 1].

The outputs on the y-axis extend from −1 to 4, inclusive.
Thus, the range is {y| − 1 ≤ y ≤ 4}, or [−1, 4].

69. The graph extends to the left and to the right without
bound. Thus, the domain is the set of all real numbers, or
(−∞,∞).

The only output is −3, so the range is {−3}.
70. The graph extends to the left and to the right without

bound. Thus, the domain is the set of all real numbers, or
(−∞,∞).

The outputs on the y-axis start at −3 and increase without
bound. Thus, the range is [−3,∞).

71. The inputs on the x-axis extend from −5 to 3, inclusive.
Thus, the domain is [−5, 3].

The outputs on the y-axis extend from −2 to 2, inclusive.
Thus, the range is [−2, 2].

72. The inputs on the x-axis extend from −2 to 4, inclusive.
Thus, the domain is [−2, 4].

The only output is 4. Thus, the range is {4}.
73.

To find the domain we look for the inputs on the x-axis
that correspond to a point on the graph. We see that each
point on the x-axis corresponds to a point on the graph so
the domain is the set of all real numbers, or (−∞,∞).

To find the range we look for outputs on the y-axis. The
number 0 is the smallest output, and every number greater
than 0 is also an output. Thus, the range is [0,∞).

74.

Domain: all real numbers, or (−∞,∞)

Range: [−2,∞)

75.

The inputs on the x-axis extend from −3 to 3, so the do-
main is [−3, 3].

The outputs on the y-axis extend from 0 to 3, so the range
is [0, 3].

76.

Domain: [−5, 5]

Range: [−5, 0]

77.

Each point on the x-axis corresponds to a point on the
graph, so the domain is the set of all real numbers, or
(−∞,∞).

Each point on the y-axis also corresponds to a point on the
graph, so the range is the set of all real numbers, (−∞,∞).

78.

Domain: all real numbers, or (−∞,∞)

Range: [1,∞)
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79.

The largest input on the x-axis is 7 and every number less
than 7 is also an input. Thus, the domain is (−∞, 7].

The number 0 is the smallest output, and every number
greater than 0 is also an output. Thus, the range is [0,∞).

80.

Domain: [−8,∞)

Range: [0,∞)

81.

Each point on the x-axis corresponds to a point on the
graph, so the domain is the set of all real numbers, or
(−∞,∞).

The largest output is 3 and every number less than 3 is
also an output. Thus, the range is (−∞, 3].

82.

Domain: all real numbers, or (−∞,∞)

Range: (−∞, 6]

83. E(t) = 1000(100 − t) + 580(100 − t)2

a) E(99.5) = 1000(100−99.5)+580(100−99.5)2

= 1000(0.5) + 580(0.5)2

= 500 + 580(0.25) = 500 + 145

= 645 m above sea level

b) E(100) = 1000(100 − 100) + 580(100 − 100)2

= 1000 · 0 + 580(0)2 = 0 + 0

= 0 m above sea level, or at sea level

84. T (0.5) = 0.51.31 ≈ 0.4 acre

T (10) = 101.31 ≈ 20.4 acres

T (20) = 201.31 ≈ 50.6 acres

T (100) = 1001.31 ≈ 416.9 acres

T (200) = 2001.31 ≈ 1033.6 acres

85. a) V (18) = 0.4123(18) + 13.2617 ≈ $20.68

V (25) = 0.4123(25) + 13.2617 ≈ $23.57

b) Substitute 30 for V (x) and solve for x.

30 = 0.4123x + 13.2617

16.7383 = 0.4123x

41 ≈ x

x ≈ 41, so it will take about $30 to equal the value
of $1 in 1913 approximately 41 yr after 1990, or in
2031.

86. A function is a correspondence between two sets in which
each member of the first set corresponds to exactly one
member of the second set.

87. The domain of a function is the set of all inputs of the
function. The range is the set of all outputs. The range
depends on the domain.

88. For (−3,−2): y2 − x2 = −5

(−2)2 − (−3)2 ? −5
4 − 9

∣∣∣
−5

∣∣ −5 TRUE

(−3,−2) is a solution.

For (2,−3): y2 − x2 = −5

(−3)2 − 22 ? −5
9 − 4

∣∣∣
5
∣∣ −5 FALSE

(2,−3) is not a solution.

89. To determine whether (0,−7) is a solution, substitute 0
for x and −7 for y.

y = 0.5x + 7

−7 ? 0.5(0) + 7∣∣∣ 0 + 7
−7

∣∣ 7 FALSE

The equation −7 = 7 is false, so (0,−7) is not a solution.

To determine whether (8, 11) is a solution, substitute 8 for
x and 11 for y.

y = 0.5x + 7

11 ? 0.5(8) + 7∣∣∣ 4 + 7
11
∣∣ 11 TRUE

The equation 11 = 11 is true, so (8, 11) is a solution.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley



y

x

2

4

�2

�4

�2�4 42

y � (x �1)2

y

x

2

�2

�4

�2�4 42

y �   x � 6
1
3

y

x

2

4

�2

�4

�2�4 42

�2x � 5y � 10

y

x�4 �2 2 4

�4

�2

2

4

(x  � 3)2 � y2 � 4

Exercise Set 1.2 59

90. For
(4

5
,−2

)
: 15x− 10y = 32

15 · 4
5
− 10(−2) ? 32

12 + 20
∣∣∣∣

32
∣∣ 32 TRUE(

4
5
,−2

)
is a solution.

For
(11

5
,

1
10

)
: 15x− 10y = 32

15 · 11
5

− 10 · 1
10

? 32

33 − 1
∣∣∣∣

32
∣∣ 32 TRUE(

11
5
,

1
10

)
is a solution.

91. Graph y = (x− 1)2.

Make a table of values, plot the points in the table, and
draw the graph.

x y (x, y)

−1 4 (−1, 4)

0 1 (0, 1)

1 0 (1, 0)

2 1 (2, 1)

3 4 (3, 4)

92.

93. Graph −2x− 5y = 10.

Make a table of values, plot the points in the table, and
draw the graph.

x y (x, y)

−5 0 (−5, 0)

0 −2 (0,−2)

5 −4 (5,−4)

94.

95. We can substitute any real number for x. Thus, the do-
main is the set of all real numbers, or (−∞,∞).

96. We find the inputs for which 2x+ 5 is nonnegative.
2x+ 5 ≥ 0

2x ≥ −5

x ≥ −5
2

Thus, the domain is
{
x

∣∣∣∣x ≥ −5
2

}
, or

[
− 5

2
,∞
)

.

97. We can substitute any real number for which the radicand
is nonnegative. We see that 8 − x ≥ 0 for x ≤ 8, so the
domain is {x|x ≤ 8}, or (−∞, 8].

98. In the numerator we can substitute any real number for
which the radicand is nonnegative. We see that x+ 1 ≥ 0
for x ≥ −1. The denominator is 0 when x = 0, so 0 cannot
be an input. Thus the domain is {x|x ≥ −1 and x 	= 0},
or [−1, 0) ∪ (0,∞).

99.
√
x+ 6 is not defined for values of x for which x + 6 is

negative. We find the inputs for which x+6 is nonnegative.
x+ 6 ≥ 0

x ≥ −6
We must also avoid inputs that make the denominator 0.

(x+ 2)(x− 3) = 0

x+ 2 = 0 or x− 3 = 0

x = −2 or x = 3

Then the domain is {x|x ≥ −6 and x 	= −2 and x 	= 3},
or [−6,−2) ∪ (−2, 3) ∪ (3,∞).

100. First we find the inputs for which x− 1 is nonnegative.
x− 1 ≥ 0

x ≥ 1
We also find the inputs that make the denominator 0.

x2 + x− 6 = 0

(x+ 3)(x− 2) = 0
x = −3 or x = 2

The domain is {x|x ≥ 1 and x 	= 2}, or [1, 2) ∪ (2,∞).

101. First we find the inputs for which 3 − x is nonnegative.
3 − x ≥ 0

3 ≥ x, or x ≤ 3
Next we find the inputs for which x+ 5 is nonnegative.

x+ 5 ≥ 0

x ≥ −5

The domain is {x| − 5 ≤ x ≤ 3}, or [−5, 3].
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102.
√
x is defined for x ≥ 0.

We find the inputs for which 4 − x is nonnegative.

4 − x ≥ 0

4 ≥ x, or x ≤ 4

The domain is {x|0 ≤ x ≤ 4}, or [0, 4].

103. Answers may vary. Two possibilities are f(x) = x, g(x) =
x+ 1 and f(x) = x2, g(x) = x2 − 4.

104.

105.

106. f(x− 1) = 5x

f(6) = f(7 − 1) = 5 · 7 = 35

107. First find the value of x for which x+ 3 = −1.
x+ 3 = −1

x = −4

Then we have:

g(x+ 3) = 2x+ 1

g(−1) = g(−4 + 3) = 2(−4) + 1 = −8 + 1 = −7

108. f(x) = |x+ 3| − |x− 4|
a) If x is in the interval (−∞,−3), then x+ 3 < 0 and
x− 4 < 0. We have:

f(x) = |x+ 3| − |x− 4|
= −(x+ 3) − [−(x− 4)]

= −(x+ 3) − (−x+ 4)

= −x− 3 + x− 4

= −7

b) If x is in the interval [−3, 4), then x + 3 ≥ 0 and
x− 4 < 0. We have:

f(x) = |x+ 3| − |x− 4|
= x+ 3 − [−(x− 4)]

= x+ 3 − (−x+ 4)

= x+ 3 + x− 4

= 2x− 1

c) If x is in the interval [4,∞), then x + 3 > 0 and
x− 4 ≥ 0. We have:

f(x) = |x+ 3| − |x− 4|
= x+ 3 − (x− 4)

= x+ 3 − x+ 4

= 7

109. f(x) = |x| + |x− 1|
a) If x is in the interval (−∞, 0), then x < 0 and
x− 1 < 0. We have:

f(x) = |x| + |x− 1|
= −x− (x− 1)

= −x− x+ 1

= −2x+ 1

b) If x is in the interval [0, 1), then x ≥ 0 and x−1 < 0.
We have:

f(x) = |x| + |x− 1|
= x− (x− 1)

= x− x+ 1

= 1

c) If x is in the interval [1,∞), then x > 0 and
x− 1 ≥ 0. We have:

f(x) = |x| + |x− 1|
= x+ x− 1

= 2x+ 1

Exercise Set 1.3

1. a) Yes. Each input is 1 more than the one that pre-
cedes it.

b) Yes. Each output is 3 more than the one that pre-
cedes it.

c) Yes. Constant changes in inputs result in constant
changes in outputs.

2. a) Yes. Each input is 10 more than the one that pre-
cedes it.

b) No. The change in the outputs varies.

c) No. Constant changes in inputs do not result in
constant changes in outputs.

3. a) Yes. Each input is 15 more than the one that pre-
cedes it.

b) No. The change in the outputs varies.

c) No. Constant changes in inputs do not result in
constant changes in outputs.

4. a) Yes. Each input is 2 more than the one that pre-
cedes it.

b) Yes. Each output is 4 less than the one that precedes
it.

c) Yes. Constant changes in inputs result in constant
changes in outputs.
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5. Two points on the line are (−4,−2) and (1, 4).

m =
y2 − y1
x2 − x1

=
4 − (−2)
1 − (−4)

=
6
5

6. m =
−5 − 1

3 − (−3)
=

−6
6

= −1

7. Two points on the line are (0, 3) and (5, 0).

m =
y2 − y1
x2 − x1

=
0 − 3
5 − 0

=
−3
5

, or −3
5

8. m =
0 − (−3)
−2 − (−2)

=
3
0

The slope is not defined.

9. m =
y2 − y1
x2 − x1

=
3 − 3
3 − 0

=
0
3

= 0

10. m =
1 − (−4)
5 − (−3)

=
5
8

11. m =
y2 − y1
x2 − x1

=
2 − 4
−1 − 9

=
−2
−10

=
1
5

12. m =
−1 − 7

5 − (−3)
=

−8
8

= −1

13. m =
y2 − y1
x2 − x1

=
6 − (−9)

4 − 4
=

15
0

Since division by 0 is not defined, the slope is not defined.

14. m =
−13 − (−1)
2 − (−6)

=
−12
8

= −3
2

15. m =
y2 − y1
x2 − x1

=
−0.4 − (−0.1)
−0.3 − 0.7

=
−0.3
−1

= 0.3

16. m =
−5

7
−
(
− 1

4

)
2
7
−
(
− 3

4

) =
−20

28
+

7
28

8
28

+
21
28

=
−13

28
29
28

=

−13
28

· 28
29

= −13
29

17. m =
y2 − y1
x2 − x1

=
−2 − (−2)

4 − 2
=

0
2

= 0

18. m =
−6 − 8

7 − (−9)
=

−14
16

= −7
8

19. m =
y2 − y1
x2 − x1

=

3
5
−
(
− 3

5

)
−1

2
− 1

2

=

6
5
−1

= −6
5

20. m =
−2.16 − 4.04

3.14 − (−8.26)
=

−6.2
11.4

= − 62
114

= −31
57

21. m =
y2 − y1
x2 − x1

=
−5 − (−13)
−8 − 16

=
8

−24
= −1

3

22. m =
y2 − y1
x2 − x1

=
2 − (−3)
π − π =

5
0

The slope is not defined.

23. m =
7 − (−7)

10 − (−10)
=

14
0

Since division by 0 is not defined, the slope is not defined.

24. m =
−4 − (−4)
0.56 −√

2
=

0
0.56 −√

2
= 0

25. We have the points (4, 3) and (−2, 15).

m =
y2 − y1
x2 − x1

=
15 − 3
−2 − 4

=
12
−6

= −2

26. m =
−5 − 1
−4 − 4

=
−6
−8

=
3
4

27. We have the points
(

1
5
,
1
2

)
and

(
− 1,−11

2

)
.

m =
y2 − y1
x2 − x1

=
−11

2
− 1

2

−1 − 1
5

=
−6

−6
5

= −6 ·
(
− 5

6

)
= 5

28. m =

10
3

− (−1)

−2
3
− 8

=

13
3

−26
3

=
13
3

·
(
− 3

26

)
= −1

2

29. y = 1.3x − 5 is in the form y = mx + b with m = 1.3, so
the slope is 1.3.

30. −2
5

31. The graph of x = −2 is a vertical line, so the slope is not
defined.

32. 4

33. f(x) = −1
2
x+ 3 is in the form y = mx+ b with m = −1

2
,

so the slope is −1
2
.

34. The graph of y =
3
4

is a horizontal line, so the slope is

0. (We also see this if we write the equation in the form

y = 0x+
3
4
.)

35. y = 9− x can be written as y = −x+ 9, or y = −1 · x+ 9.
Now we have an equation in the form y = mx + b with
m = −1, so the slope is −1.

36. The graph of x = 8 is a vertical line, so the slope is not
defined.

37. The graph of y = 0.7 is a horizontal line, so the slope is
0. (We also see this if we write the equation in the form
y = 0x+ 0.7).

38. y =
4
5
− 2x, or y = −2x+

4
5

The slope is −2.

39. We have the points (1997, 198.2) and (2006, 154.8), where
the second coordinates represent millions of pounds. We
find the average rate of change, or slope.

m =
154.8 − 198.2
2006 − 1997

=
−43.4

9
≈ −4.8

The average rate of change over the 9-year period was
about −4.8 million lb per year.
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40. m =
40.3 − 2

2005 − 1985
=

38.3
20

= 1.915

The average rate of change over the 20-year period was
1.915 million cases per year.

41. We have the points (1, 59, 368) and (29, 107, 097). We
find the average rate of change, or slope.

m =
107, 097 − 59, 368

29 − 1
=

47, 729
28

≈ 1705

The average rate of change in attendance was about 1705
per race.

42. m =
8.3 − 16.3

2004 − 1995
=

−8.0
9

≈ −0.89

The average rate of change over the 9-yr period was about
−0.89% per year.

43. We have the points (2001, 191) and (2006, 172), where the
second coordinates represent millions. We find the average
rate of change, or slope.

m =
172 − 191

2006 − 2001
=

19
−5

= −3.8

The average rate of change over the 5-year period was
−3.8 million land-lines per year.

44. m =
8900 − 3275
2006 − 1992

=
5625
14

≈ 401.79

The average rate of change over the 14-yr period was about
$401.79 per year.

45. First we convert the times to minutes.

10 sec = 10 sec · 1 min
60 sec

=
10
60

· sec
sec

· min =
1
6

min

Thus, 31 min 10 sec = 31 min +
1
6

min = 31
1
6

min, or
187
6

min.

1 hr = 60 min

38 sec = 38 sec · 1 min
60 sec

=
38
60

· sec
sec

· min =
19
30

min

Thus, 1 hr 1 min 38 sec = 60 min + 1 min +
19
30

min =

61
19
30

min, or
1849
30

min.

Now we find the speed.
10 − 5

1849
30

− 187
6

=
5

1849
30

− 935
30

=
5

914
30

= 5 · 30
914

=

150
914

=
2/ · 75
2/ · 457

=
75
457

≈ 1
6

Lucie’s speed was
75
457

mi per minute, or about 0.16 mi
per minute.

46. Typing rate =

3
4
− 1

6
6

=

7
12
6

=
7
72

of the paper per hour

47. y =
3
5
x− 7

The equation is in the form y = mx + b where m =
3
5

and b = −7. Thus, the slope is
3
5
, and the y-intercept is

(0,−7).

48. f(x) = −2x+ 3

Slope: −2; y-intercept: (0, 3)

49. x = −2
5

This is the equation of a vertical line
2
5

unit to the left
of the y-axis. The slope is not defined, and there is no
y-intercept.

50. y =
4
7

= 0 · x+
4
7

Slope: 0; y-intercept:
(

0,
4
7

)

51. f(x) = 5 − 1
2
x, or f(x) = −1

2
x+ 5

The second equation is in the form y = mx + b where

m = −1
2

and b = 5. Thus, the slope is −1
2

and the y-

intercept is (0, 5).

52. y = 2 +
3
7
x

Slope:
3
7
; y-intercept: (0, 2)

53. Solve the equation for y.
3x+ 2y = 10

2y = −3x+ 10

y = −3
2
x+ 5

Slope: −3
2
; y-intercept: (0, 5)

54. 2x− 3y = 12

−3y = −2x+ 12

y =
2
3
x− 4

Slope:
2
3
; y-intercept: (0,−4)

55. y = −6 = 0 · x− 6

Slope: 0; y-intercept: (0,−6)

56. x = 10

This is the equation of a vertical line 10 units to the right
of the y-axis. The slope is not defined, and there is no
y-intercept.

57. Solve the equation for y.
5y − 4x = 8

5y = 4x+ 8

y =
4
5
x+

8
5

Slope:
4
5
; y-intercept:

(
0,

8
5

)
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58. 5x− 2y + 9 = 0

−2y = −5x− 9

y =
5
2
x+

9
2

Slope:
5
2
; y-intercept:

(
0,

9
2

)

59. Solve the equation for y.

4y − x+ 2 = 0

4y = x− 2

y =
1
4
x− 1

2

Slope:
1
4
; y-intercept:

(
0,−1

2

)

60. f(x) = 0.3 + x; or f(x) = x+ 0.3

Slope: 1; y-intercept: (0, 0.3)

61. Graph y = −1
2
x− 3.

Plot the y-intercept, (0,−3). We can think of the slope

as
−1
2

. Start at (0,−3) and find another point by moving

down 1 unit and right 2 units. We have the point (2,−4).

We could also think of the slope as
1
−2

. Then we can start

at (0,−3) and get another point by moving up 1 unit and
left 2 units. We have the point (−2,−2). Connect the
three points to draw the graph.

62.

63. Graph f(x) = 3x− 1.

Plot the y-intercept, (0,−1). We can think of the slope

as
3
1
. Start at (0,−1) and find another point by moving

up 3 units and right 1 unit. We have the point (1, 2). We
can move from the point (1, 2) in a similar manner to get
a third point, (2, 5). Connect the three points to draw the
graph.

64.

65. First solve the equation for y.

3x− 4y = 20

−4y = −3x+ 20

y =
3
4
x− 5

Plot the y-intercept, (0,−5). Then using the slope,
3
4
,

start at (0,−5) and find another point by moving up
3 units and right 4 units. We have the point (4,−2). We
can move from the point (4,−2) in a similar manner to get
a third point, (8, 1). Connect the three points to draw the
graph.

66.

67. First solve the equation for y.

x+ 3y = 18

3y = −x+ 18

y = −1
3
x+ 6
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Plot the y-intercept, (0, 6). We can think of the slope as
−1
3

. Start at (0, 6) and find another point by moving down

1 unit and right 3 units. We have the point (3, 5). We can
move from the point (3, 5) in a similar manner to get a
third point, (6, 4). Connect the three points and draw the
graph.

68.

69. a) W (h) = 4h− 130

b)

c) W (62) = 4 · 62 − 130 = 248 − 130 = 118 lb

70. P (d) =
1
33
d+ 1

a)

b) P (0) =
1
33

· 0 + 1 = 1 atm

P (5) =
1
33

· 5 + 1 = 1
5
33

atm

P (10) =
1
33

· 10 + 1 = 1
10
33

atm

P (33) =
1
33

· 33 + 1 = 2 atm

P (200) =
1
33

· 200 + 1 =
233
33

atm, or 7
2
33

atm

71. D(F ) = 2F + 115

a)

b) D(0) = 2 · 0 + 115 = 115 ft

D(−20) = 2(−20) + 115 = −40 + 115 = 75 ft

D(10) = 2 · 10 + 115 = 20 + 115 = 135 ft

D(32) = 2 · 32 + 115 = 64 + 115 = 179 ft

c) Below −57.5◦, stopping distance is negative; above
32◦, ice doesn’t form.

72. a) M(x) = 2.89x+ 70.64

M(26) = 2.89(26) + 70.64 = 145.78 cm

b) The length of the humerus must be positive, so the
domain is {x|x > 0}, or (0,∞). Realistically, how-
ever, we might expect the length of the humerus to
be between 20 cm and 60 cm, so the domain could
be {x|20 ≤ x ≤ 60}, or [20, 60]. Answers may vary.

73. a) D(r) =
11r + 5

10
=

11
10
r +

5
10

The slope is
11
10

.

For each mph faster the car travels, it takes
11
10

ft
longer to stop.

b)

0
0

100

100

11x � 5

10
y �

c) D(5) =
11 · 5 + 5

10
=

60
10

= 6 ft

D(10) =
11 · 10 + 5

10
=

115
10

= 11.5 ft

D(20) =
11 · 20 + 5

10
=

225
10

= 22.5 ft

D(50) =
11 · 50 + 5

10
=

555
10

= 55.5 ft

D(65) =
11 · 65 + 5

10
=

720
10

= 72 ft

d) The speed cannot be negative. D(0) =
1
2

which

says that a stopped car travels
1
2

ft before stop-
ping. Thus, 0 is not in the domain. The speed can
be positive, so the domain is {r|r > 0}, or (0,∞).
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74. V (t) = $5200 − $512.50t

a)

b) V (0) = $5200 − $512.50(0) =

$5200 − $0 = $5200

V (1) = $5200 − $512.50(1) =

$5200 − $512.50 = $4687.50

V (2) = $5200 − $512.50(2) =

$5200 − $1025 = $4175

V (3) = $5200 − $512.50(3) =

$5200 − $1537.50 = $3662.50

V (8) = $5200 − $512.50(8) =

$5200 − $4100 = $1100

c) Since the time must be nonnegative and not more
than 8 years, the domain is [0, 8]. The value starts
at $5200 and declines to $1100, so the range is
[1100, 5200].

75. C(t) = 60 + 29t

C(6) = 60 + 29 · 6 = $234

76. C(t) = 65 + 105t

C(8) = 65 + 105 · 8 = $905

77. Let x = the number of shirts produced.

C(x) = 800 + 3x

C(75) = 800 + 3 · 75 = $1025

78. Let x = the number of rackets restrung.

C(x) = 950 + 24x

C(150) = 950 + 24 · 150 = $4550

79. A vertical line (x = a) crosses the graph more than once.

80. The sign of the slope indicates the slant of a line. A line
that slants up from left to right has positive slope because
corresponding changes in x and y have the same sign. A
line that slants down from left to right has negative slope,
because corresponding changes in x and y have opposite
signs. A horizontal line has zero slope, because there is
no change in y for a given change in x. A vertical line
has undefined slope, because there is no change in x for
a given change in y and division by 0 is undefined. The
larger the absolute value of slope, the steeper the line. This
is because a larger absolute value corresponds to a greater
change in y, compared to the change in x, than a smaller
absolute value.

81. f(x) = x2 − 3x

f

(
1
2

)
=
(

1
2

)2

− 3 · 1
2

=
1
4
− 3

2
= −5

4

82. f(5) = 52 − 3 · 5 = 10

83. f(x) = x2 − 3x

f(−5) = (−5)2 − 3(−5) = 25 + 15 = 40

84. f(x) = x2 − 3x

f(−a) = (−a)2 − 3(−a) = a2 + 3a

85. f(x) = x2 − 3x

f(a+ h) = (a+ h)2 − 3(a+ h) = a2 + 2ah+ h2 − 3a− 3h

86. We make a drawing and label it. Let h = the height of the
triangle, in feet.

Using the Pythagorean theorem we have:

x2 + h2 = 25

x2 = 25 − h2

x =
√

25 − h2

We know that the grade of the treadmill is 8%, or 0.08.
Then we have

h

x
= 0.08

h√
25 − h2

= 0.08 Substituting
√

25 − h2 for x

h2

25 − h2
= 0.0064 Squaring both sides

h2 = 0.16 − 0.0064h2

1.0064h2 = 0.16

h2 =
0.16

1.0064
h ≈ 0.4 ft

87. m =
y2 − y1
x2 − x1

=
−2d− (−d)
9c− (−c) =

−2d+ d
9c+ c

=
−d
10c

= − d

10c

88. m =
s− (s+ t)
r − r =

s− s− t
0

The slope is not defined.

89. m =
y2 − y1
x2 − x1

=
z − z

2 − q − (z + q)
=

0
z − q − z − q =

0
−2q

= 0

90. m =
p− q − (p+ q)
a+ b− (−a− b) =

p− q − p− q
a+ b+ a+ b

=
−2q

2a+ 2b
=

− q

a+ b

91. m =
y2 − y1
x2 − x1

=
(a+h)2−a2
a+ h− a =

a2+2ah+h2−a2
h

=

2ah+ h2

h
=
h(2a+ h)

h
= 2a+ h
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92. m =
3(a+ h) + 1 − (3a+ 1)

a+ h− a =

3a+ 3h+ 1 − 3a− 1
h

=
3h
h

= 3

93. False. For example, let f(x) = x+1. Then f(cd) = cd+1,
but f(c)f(d) = (c+ 1)(d+ 1) = cd+ c+ d+ 1 	= cd+ 1 for
c 	= −d.

94. False. For example, let f(x) = x + 1. Then f(c + d) =
c+ d+ 1, but f(c) + f(d) = c+ 1 + d+ 1 = c+ d+ 2.

95. False. For example, let f(x) = x + 1. Then f(c − d) =
c− d+ 1, but f(c) − f(d) = c+ 1 − (d+ 1) = c− d.

96. False. For example, let f(x) = x+1. Then f(kx) = kx+1,
but kf(x) = k(x+ 1) = kx+ k 	= kx+ 1 for k 	= 1.

97. f(x) = mx+ b

f(x+ 2) = f(x) + 2

m(x+ 2) + b = mx+ b+ 2

mx+ 2m+ b = mx+ b+ 2

2m = 2

m = 1

Thus, f(x) = 1 · x+ b, or f(x) = x+ b.

98. 3mx+ b = 3(mx+ b)

3mx+ b = 3mx+ 3b

b = 3b

0 = 2b

0 = b

Thus, f(x) = mx+ 0, or f(x) = mx.

Exercise Set 1.4

1. We see that the y-intercept is (0,−2). Another point on
the graph is (1, 2). Use these points to find the slope.

m =
y2 − y1
x2 − x1

=
2 − (−2)

1 − 0
=

4
1

= 4

We have m = 4 and b = −2, so the equation is y = 4x− 2.

2. We see that the y-intercept is (0, 2). Another point on the
graph is (4,−1).

m =
−1 − 2
4 − 0

= −3
4

The equation is y = −3
4
x+ 2.

3. We see that the y-intercept is (0, 0). Another point on the
graph is (3,−3). Use these points to find the slope.

m =
y2 − y1
x2 − x1

=
−3 − 0
3 − 0

=
−3
3

= −1

We have m = −1 and b = 0, so the equation is
y = −1 · x+ 0, or y = −x.

4. We see that the y-intercept is (0,−1). Another point on
the graph is (3, 1).

m =
1 − (−1)

3 − 0
=

2
3

The equation is y =
2
3
x− 1.

5. We see that the y-intercept is (0,−3). This is a horizontal
line, so the slope is 0. We have m = 0 and b = −3, so the
equation is y = 0 · x− 3, or y = −3.

6. We see that the y-intercept is (0, 0). Another point on the
graph is (3, 3).

m =
3 − 0
3 − 0

=
3
3

= 1

The equation is y = 1 · x+ 0, or y = x.

7. We substitute
2
9

for m and 4 for b in the slope-intercept
equation.

y = mx+ b

y =
2
9
x+ 4

8. y = −3
8
x+ 5

9. We substitute −4 for m and −7 for b in the slope-intercept
equation.

y = mx+ b

y = −4x− 7

10. y =
2
7
x− 6

11. We substitute −4.2 form and
3
4

for b in the slope-intercept
equation.

y = mx+ b

y = −4.2x+
3
4

12. y = −4x− 3
2

13. Using the point-slope equation:

y − y1 = m(x− x1)

y − 7 =
2
9
(x− 3) Substituting

y − 7 =
2
9
x− 2

3

y =
2
9
x+

19
3

Slope-intercept equation

Using the slope-intercept equation:

Substitute
2
9

for m, 3 for x, and 7 for y in the slope-
intercept equation and solve for b.

y = mx+ b

7 =
2
9
· 3 + b

7 =
2
3

+ b

19
3

= b

Now substitute
2
9

for m and
19
3

for b in y = mx+ b.

y =
2
9
x+

19
3
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14. Using the point-slope equation:

y − 6 = −3
8
(x− 5)

y = −3
8
x+

63
8

Using the slope-intercept equation:

6 = −3
8
· 5 + b

63
8

= b

We have y = −3
8
x+

63
8

.

15. The slope is 0 and the second coordinate of the given point
is 8, so we have a horizontal line 8 units above the x-axis.
Thus, the equation is y = 8.

We could also use the point-slope equation or the slope-
intercept equation to find the equation of the line.

Using the point-slope equation:

y − y1 = m(x− x1)

y − 8 = 0(x− (−2)) Substituting

y − 8 = 0

y = 8

Using the slope-intercept equation:

y = mx+ b

y = 0(−2) + 8

y = 8

16. Using the point-slope equation:

y − 1 = −2(x− (−5))

y = −2x− 9

Using the slope-intercept equation:

1 = −2(−5) + b

−9 = b

We have y = −2x− 9.

17. Using the point-slope equation:

y − y1 = m(x− x1)

y − (−1) = −3
5
(x− (−4))

y + 1 = −3
5
(x+ 4)

y + 1 = −3
5
x− 12

5

y = −3
5
x− 17

5
Slope-intercept

equation

Using the slope-intercept equation:

y = mx+ b

−1 = −3
5
(−4) + b

−1 =
12
5

+ b

−17
5

= b

Then we have y = −3
5
x− 17

5
.

18. Using the point-slope equation:

y − (−5) =
2
3
(x− (−4))

y =
2
3
x− 7

3
Using the slope-intercept equation:

−5 =
2
3
(−4) + b

−7
3

= b

We have y =
2
3
x− 7

3
.

19. First we find the slope.

m =
−4 − 5

2 − (−1)
=

−9
3

= −3

Using the point-slope equation:

Using the point (−1, 5), we get

y − 5 = −3(x− (−1)), or y − 5 = −3(x+ 1).

Using the point (2,−4), we get

y − (−4) = −3(x− 2), or y + 4 = −3(x− 2).

In either case, the slope-intercept equation is
y = −3x+ 2.

Using the slope-intercept equation and the point (−1, 5):

y = mx+ b

5 = −3(−1) + b

5 = 3 + b

2 = b

Then we have y = −3x+ 2.

20. First we find the slope:

m =

1
2
− 1

2
−3 − 1

=
0
−4

= 0

We have a horizontal line
1
2

unit above the x-axis. The

equation is y =
1
2
.

(We could also have used the point-slope equation or the
slope-intercept equation.)

21. First we find the slope.

m =
4 − 0
−1 − 7

=
4
−8

= −1
2

Using the point-slope equation:

Using the point (7, 0), we get

y − 0 = −1
2
(x− 7).

Using the point (−1, 4), we get

y − 4 = −1
2
(x− (−1)), or

y − 4 = −1
2
(x+ 1).
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In either case, the slope-intercept equation is

y = −1
2
x+

7
2
.

Using the slope-intercept equation and the point (7, 0):

0 = −1
2
· 7 + b

7
2

= b

Then we have y = −1
2
x+

7
2
.

22. First we find the slope.

m =
−5 − 7

−1 − (−3)
=

−12
2

= −6

Using the point-slope equation:

Using (−3, 7): y − 7 = −6(x− (−3)), or

y − 7 = −6(x+ 3)

Using (−1,−5): y − (−5) = −6(x− (−1)), or

y + 5 = −6(x+ 1)

In either case, we have y = −6x− 11.

Using the slope-intercept equation and the point (−1,−5):

−5 = −6(−1) + b

−11 = b

We have y = −6x− 11.

23. First we find the slope.

m =
−4 − (−6)

3 − 0
=

2
3

We know the y-intercept is (0,−6), so we substitute in the
slope-intercept equation.

y = mx+ b

y =
2
3
x− 6

24. First we find the slope.

m =

4
5
− 0

0 − (−5)
=

4
5
5

=
4
25

We know the y-intercept is
(

0,
4
5

)
, so we substitute in the

slope-intercept equation.

y =
4
25
x+

4
5

25. First we find the slope.

m =
7.3 − 7.3
−4 − 0

=
0
−4

= 0

We know the y-intercept is (0, 7.3), so we substitute in
the slope-intercept equation.

y = mx+ b

y = 0 · x+ 7.3

y = 7.3

26. First we find the slope.

m =
−5 − 0
−13 − 0

=
5
13

We know the y-intercept is (0, 0), so we substitute in the
slope intercept equation.

y =
5
13
x+ 0

y =
5
13
x

27. The equation of the horizontal line through (0,−3) is of
the form y = b where b is −3. We have y = −3.

The equation of the vertical line through (0,−3) is of the
form x = a where a is 0. We have x = 0.

28. Horizontal line: y = 7

Vertical line: x = −1
4

29. The equation of the horizontal line through
(

2
11
,−1

)
is

of the form y = b where b is −1. We have y = −1.

The equation of the vertical line through
(

2
11
,−1

)
is of

the form x = a where a is
2
11

. We have x =
2
11

.

30. Horizontal line: y = 0

Vertical line: x = 0.03

31. We have the points (1, 4) and (−2, 13). First we find the
slope.

m =
13 − 4
−2 − 1

=
9
−3

= −3

We will use the point-slope equation, choosing (1, 4) for
the given point.

y − 4 = −3(x− 1)

y − 4 = −3x+ 3

y = −3x+ 7, or

h(x) = −3x+ 7

Then h(2) = −3 · 2 + 7 = −6 + 7 = 1.

32. m =
3 − (−6)

2 −
(
− 1

4

) =
9
9
4

= 9 · 4
9

= 4

Using the point-slope equation and the point (2, 3):

y − 3 = 4(x− 2)

y − 3 = 4x− 8

y = 4x− 5, or

g(x) = 4x− 5

Then g(−3) = 4(−3) − 5 = −12 − 5 = −17.

33. We have the points (5, 1) and (−5,−3). First we find the
slope.

m =
−3 − 1
−5 − 5

=
−4
−10

=
2
5
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We will use the slope-intercept equation, choosing (5, 1)
for the given point.

y = mx+ b

1 =
2
5
· 5 + b

1 = 2 + b

−1 = b

Then we have f(x) =
2
5
x− 1.

Now we find f(0).

f(0) =
2
5
· 0 − 1 = −1.

34. m =
2 − 3

0 − (−3)
=

−1
3

= −1
3

Using the slope-intercept equation and the point (0, 2),

which is the y-intercept, we have h(x) = −1
3
x+ 2.

Then h(−6) = −1
3
(−6) + 2 = 2 + 2 = 4.

35. The slopes are
26
3

and − 3
26

. Their product is −1, so the
lines are perpendicular.

36. The slopes are −3 and −1
3
. The slopes are not the same

and their product is not −1, so the lines are neither parallel
nor perpendicular.

37. The slopes are
2
5

and −2
5
. The slopes are not the same and

their product is not −1, so the lines are neither parallel nor
perpendicular.

38. The slopes are the same
(

3
2

= 1.5
)

and the y-intercepts,

−8 and 8, are different, so the lines are parallel.

39. We solve each equation for y.
x+ 2y = 5 2x+ 4y = 8

y = −1
2
x+

5
2

y = −1
2
x+ 2

We see that m1 = −1
2

and m2 = −1
2
. Since the slopes are

the same and the y-intercepts,
5
2

and 2, are different, the
lines are parallel.

40. 2x− 5y = −3 2x+ 5y = 4

y =
2
5
x+

3
5

y = −2
5
x+

4
5

m1 =
2
5
, m2 = −2

5
; m1 	= m2; m1m2 = − 4

25
	= −1

The lines are neither parallel nor perpendicular.

41. We solve each equation for y.
y = 4x− 5 4y = 8 − x

y = −1
4
x+ 2

We see that m1 = 4 and m2 = −1
4
. Since

m1m2 = 4
(
− 1

4

)
= −1, the lines are perpendicular.

42. y = 7 − x,
y = x+ 3
m1 = −1, m2 = 1; m1m2 = −1 · 1 = −1

The lines are perpendicular.

43. y =
2
7
x+ 1; m =

2
7

The line parallel to the given line will have slope
2
7
. We

use the point-slope equation for a line with slope
2
7

and

containing the point (3, 5):

y − y1 = m(x− x1)

y − 5 =
2
7
(x− 3)

y − 5 =
2
7
x− 6

7

y =
2
7
x+

29
7

Slope-intercept form

The slope of the line perpendicular to the given line is the

opposite of the reciprocal of
2
7
, or −7

2
. We use the point-

slope equation for a line with slope −7
2

and containing the

point (3, 5):

y − y1 = m(x− x1)

y − 5 = −7
2
(x− 3)

y − 5 = −7
2
x+

21
2

y = −7
2
x+

31
2

Slope-intercept form

44. f(x) = 2x+ 9

m = 2, − 1
m

= −1
2

Parallel line: y − 6 = 2(x− (−1))

y = 2x+ 8

Perpendicular line: y − 6 = −1
2
(x− (−1))

y = −1
2
x+

11
2

45. y = −0.3x+ 4.3; m = −0.3

The line parallel to the given line will have slope −0.3. We
use the point-slope equation for a line with slope −0.3 and
containing the point (−7, 0):

y − y1 = m(x− x1)

y − 0 = −0.3(x− (−7))

y = −0.3x− 2.1 Slope-intercept form

The slope of the line perpendicular to the given line is the

opposite of the reciprocal of −0.3, or
1

0.3
=

10
3

.

We use the point-slope equation for a line with slope
10
3

and containing the point (−7, 0):
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y − y1 = m(x− x1)

y − 0 =
10
3

(x− (−7))

y =
10
3
x+

70
3

Slope-intercept form

46. 2x+ y = −4

y = −2x− 4

m = −2, − 1
m

=
1
2

Parallel line: y − (−5) = −2(x− (−4))

y = −2x− 13

Perpendicular line: y − (−5) =
1
2
(x− (−4))

y =
1
2
x− 3

47. 3x+ 4y = 5

4y = −3x+ 5

y = −3
4
x+

5
4
; m = −3

4

The line parallel to the given line will have slope −3
4
. We

use the point-slope equation for a line with slope −3
4

and

containing the point (3,−2):

y − y1 = m(x− x1)

y − (−2) = −3
4
(x− 3)

y + 2 = −3
4
x+

9
4

y = −3
4
x+

1
4

Slope-intercept form

The slope of the line perpendicular to the given line is the

opposite of the reciprocal of −3
4
, or

4
3
. We use the point-

slope equation for a line with slope
4
3

and containing the

point (3,−2):

y − y1 = m(x− x1)

y − (−2) =
4
3
(x− 3)

y + 2 =
4
3
x− 4

y =
4
3
x− 6 Slope-intercept form

48. y = 4.2(x− 3) + 1

y = 4.2x− 11.6

m = 4.2; − 1
m

= − 1
4.2

= − 5
21

Parallel line: y − (−2) = 4.2(x− 8)

y = 4.2x− 35.6

Perpendicular line: y − (−2) = − 5
21

(x− 8)

y = − 5
21
x− 2

21

49. x = −1 is the equation of a vertical line. The line parallel
to the given line is a vertical line containing the point
(3,−3), or x = 3.

The line perpendicular to the given line is a horizontal line
containing the point (3,−3), or y = −3.

50. y = −1 is a horizontal line.

Parallel line: y = −5

Perpendicular line: x = 4

51. x = −3 is a vertical line and y = 5 is a horizontal line, so
it is true that the lines are perpendicular.

52. The slope of y = 2x− 3 is 2, and the slope of y = −2x− 3
is −2. Since 2(−2) = −4 	= −1, it is false that the lines
are perpendicular.

53. The lines have the same slope,
2
5
, and different y-

intercepts, (0, 4) and (0,−4), so it is true that the lines are
parallel.

54. y = 2 is a horizontal line 2 units above the x-axis; x = −3
4

is a vertical line
3
4

unit to the left of the y-axis. Thus it is

true that their intersection is the point
3
4

unit to the left

of the y-axis and 2 units above the x-axis, or
(
− 3

4
, 2
)

.

55. x = −1 and x = 1 are both vertical lines, so it is false that
they are perpendicular.

56. The slope of 2x+3y = 4, or y = −2
3
x+

4
3

is −2
3
; the slope

of 3x− 2y = 4, or y =
3
2
x− 2, is

3
2
. Since −2

3
· 3
2

= −1, it
is true that the lines are perpendicular.

57. No. The data points fall faster from 0 to 2 than after 2
(that is, the rate of change is not constant), so they cannot
be modeled by a linear function.

58. Yes. The rate of change seems to be constant, so the scat-
terplot might be modeled by a linear function.

59. Yes. The rate of change seems to be constant, so the scat-
terplot might be modeled by a linear function.

60. No. The data points rise, fall, and then rise again in a way
that cannot be modeled by a linear function.

61. a) Answers may vary depending on the data points
used. We will use (5, 96.7) and (13, 128.7).

m =
128.7 − 96.7

13 − 5
=

32
8

= 4

We will use the point slope equation, letting
(x1, y1) = (5, 96.7).

y − 96.7 = 4(x− 5)

y − 96.7 = 4x− 20

y = 4x+ 76.7,

where x is the number of years after 1990 and y is
in thousands.
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b) In 2009, x = 2009 − 1990 = 19.

y = 4 · 19 + 76.7 = 152.7

We estimate the number of twin births in 2009 to
be 152.7 thousand, or 152,700.
In 2012, x = 2012 − 1990 = 22.

y = 4 · 22 + 76.7 = 164.7

We estimate the number of twin births in 2012 to
be 164.7 thousand, or 164,700.

62. a) Answers may vary depending on the data points
used. We will use (10, 6742) and (13, 7110).

m =
7110 − 6742

13 − 10
=

368
3

≈ 122.7

Using the point-slope equation:

y − 6742 = 122.7(x− 10)

y − 6742 = 122.7x− 1227

y = 122.7x+ 5515,

where x is the number of years after 1990.

b) 2009: y = 122.7(19) + 5515 ≈ 7846 triplet births

2012: y = 122.7(22) + 5515 ≈ 8214 triplet births

63. Answers may vary depending on the data points used. We
will use (2, 300) and (9, 328).

m =
328 − 300

9 − 2
=

28
7

= 4

We will use the slope-intercept equation with the point
(2, 300).

y = mx+ b

300 = 4 · 2 + b

300 = 8 + b

292 = b

We have y = 4x+292, where x is the number of years after
1995 and y is in millions.

In 2006, x = 2006 − 1995 = 11.

y = 4 · 11 + 292 = 336

We estimate attendance at U.S. amusement/theme parks
in 2006 to be 336 million.

In 2010, x = 2010 − 1995 = 15

y = 4 · 15 + 292 = 352

We estimate attendance at U.S. amusement/theme parks
in 2010 to be 352 million.

64. Answers may vary depending on the data points used. We
will use (1, 183) and (4, 230).

m =
230 − 183

4 − 1
=

47
3

≈ 15.67

Using the slope-intercept equation with the point (1, 183):

183 = 15.67 · 1 + b

167.33 = b

We have y = 15.67x + 167.33 where x is the number of
years after 2001 and y is in billions of dollars.

2007: y = 15.67(6) + 167.33 ≈ $261 billion

2011: y = 15.67(10) + 167.33 ≈ $324 billion

65. Answers may vary depending on the data points used.

We will use (10, 321) and (35, 955).

m =
955 − 321
35 − 10

=
634
25

= 25.36

We will use the point-slope equation with the point
(10, 321):

y − 321 = 25.36(x− 10)

y − 321 = 25.36x− 253.6

y = 25.36x+ 67.4,

where x is the number of years after 1970.

In 2009, x = 2009 − 1970 = 39.

y = 25.36(39) + 67.4 ≈ $1056

In 2012, x = 2012 − 1970 = 42.

y = 25.36(42) + 67.4 ≈ $1133

In 2020, x = 2020 − 1970 = 50.

y = 25.36(50) + 67.4 ≈ $1335

66. Answers will vary depending on the data points used. We
will use (0, 20.423) and (20, 11.358).

m =
11.358 − 20.423

20 − 0
=

−9.065
20

= −0.45325

Substituting in the slope-intercept equation we have
y = −0.45325x + 20.423, where x is the number of years
after 1970 and y is in millions.

2008: y = −0.45325(38) + 20.423 = 3.1995

We estimate the number of sheep and lambs on farms in
2008 to be 3.1995 million, or 3,199,500.

2013: y = −0.45325(43) + 20.423 = 0.93325

There will be about 0.93325 million, or 933,250 sheep and
lambs on farms in 2013.

67. a) Using the linear regression feature on a graphing
calculator, we get M = 0.2H + 156.

b) For H = 40: M = 0.2(40) + 156 = 164 beats per
minute

For H = 65: M = 0.2(65) + 156 = 169 beats per
minute

For H = 76: M = 0.2(76) + 156 ≈ 171 beats per
minute

For H = 84: M = 0.2(84) + 156 ≈ 173 beats per
minute

c) r = 1; all the data points are on the regression line
so it should be a good predictor.

68. a) y = 0.072050673x+ 81.99920823

b) For x = 24:
y = 0.072050673(24) + 81.99920823 ≈ 84%

For x = 6:
y = 0.072050673(6) + 81.99920823 ≈ 82%

For x = 18:
y = 0.072050673(18) + 81.99920823 ≈ 83%

c) r = 0.0636; since there is a very low correlation, the
regression line is not a good predictor.
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69. a) Using the linear regression feature on a graphing
calculator, we get y = 5.6524x + 8.731, where x is
the number of years after 1995 and y is in millions.

b) In 2010, x = 2010 − 1995 = 15.

y = 5.6524(15) + 8.731 = 93.517

We estimate the number of tax returns filed elec-
tronically in 2010 to be 93.517 million, or
93,517,000.
In 2014, x = 2014 − 1995 = 19.

y = 5.6524(19) + 8.731 ≈ 116.127

We estimate the number of tax returns filed elec-
tronically in 2014 to be 116.127 million, or
116,127,000.

c) r ≈ 0.9931; since |r| is close to 1, the line fits the
data closely.

70. a) y = 315.5867925x + 3036.122642, where x is the
number of years after 1990.

b) When x = 22, we have y = 9979 triplet births. This
estimate is 1765 higher (or about 21.5% higher) than
the estimate found in Exercise 62.

c) r ≈ 0.9686; since |r| is close to 1, the line fits the
data closely.

71. a) Using the linear regression feature on a graphing
calculator, we have y = 3.176981132x+88.15660377,
where x is the number of years after 1990 and y is
in thousands.

b) In 2012, x = 2012 − 1990 = 22. When x = 22,
we have y = 158.05 thousand, or 158,050. This
estimate is 6650 lower (or about 4% lower) than the
estimate found in Exercise 61.

c) r ≈ 0.9584; since |r| is close to 1, the line fits the
data closely.

72. Answers will vary.

73. Answers will vary.

74. m =
−7 − 7
5 − 5

=
−14
0

The slope is not defined.

75. m =
y2 − y1
x2 − x1

=
−1 − (−8)
−5 − 2

=
−1 + 8
−7

=
7
−7

= −1

76. r =
d

2
=

5
2

(x− 0)2 + (y − 3)2 =
(

5
2

)2

x2 + (y − 3)2 =
25
4
, or

x2 + (y − 3)2 = 6.25

77. (x− h)2 + (y − k)2 = r2

[x− (−7)]2 + [y − (−1)]2 =
(

9
5

)2

(x+ 7)2 + (y + 1)2 =
81
25

78. m =
920.58
13, 740

= 0.067

The road grade is 6.7%.

We find an equation of the line with slope 0.067 and con-
taining the point (13, 740, 920.58):

y − 920.58 = 0.067(x− 13, 740)

y − 920.58 = 0.067x− 920.58

y = 0.067x

79. The slope of the line containing (−3, k) and (4, 8) is
8 − k

4 − (−3)
=

8 − k
7

.

The slope of the line containing (5, 3) and (1,−6) is
−6 − 3
1 − 5

=
−9
−4

=
9
4
.

The slopes must be equal in order for the lines to be par-
allel:

8 − k
7

=
9
4

32 − 4k = 63 Multiplying by 28

−4k = 31

k = −31
4
, or − 7.75

80. The slope of the line containing (−1, 3) and (2, 9) is
9 − 3

2 − (−1)
=

6
3

= 2.

Then the slope of the desired line is −1
2
. We find the

equation of that line:

y − 5 = −1
2
(x− 4)

y − 5 = −1
2
x+ 2

y = −1
2
x+ 7

Exercise Set 1.5

1. 4x+ 5 = 21

4x = 16 Subtracting 5 on both sides

x = 4 Dividing by 4 on both sides

The solution is 4.

2. 2y − 1 = 3

2y = 4

y = 2

The solution is 2.
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3. 23 − 2
5
x = −2

5
x+ 23

23 = 23 Adding
2
5
x on both sides

We get an equation that is true for any value of x, so the
solution set is the set of real numbers,
{x|x is a real number}, or (−∞,∞).

4.
6
5
y + 3 =

3
10

The LCD is 10.

10
(

6
5
y + 3

)
= 10 · 3

10

12y + 30 = 3

12y = −27

y = −9
4

The solution is −9
4
.

5. 4x+ 3 = 0

4x = −3 Subtracting 3 on both sides

x = −3
4

Dividing by 4 on both sides

The solution is −3
4
.

6. 3x− 16 = 0

3x = 16

x =
16
3

The solution is
16
3

.

7. 3 − x = 12

−x = 9 Subtracting 3 on both sides

x = −9 Multiplying (or dividing) by −1
on both sides

The solution is −9.

8. 4 − x = −5

−x = −9

x = 9

The solution is 9.

9. 3 − 1
4
x =

3
2

The LCD is 4.

4
(

3 − 1
4
x

)
= 4 · 3

2
Multiplying by the LCD
to clear fractions

12 − x = 6

−x = −6 Subtracting 12 on both sides

x = 6 Multiplying (or dividing) by −1
on both sides

The solution is 6.

10. 10x− 3 = 8 + 10x

−3 = 8 Subtracting 10x on both sides

We get a false equation. Thus, the original equation has
no solution.

11.
2
11

− 4x = −4x+
9
11

2
11

=
9
11

Adding 4x on both sides

We get a false equation. Thus, the original equation has
no solution.

12. 8 − 2
9
x =

5
6

The LCD is 18.

18
(

8 − 2
9
x

)
= 18 · 5

6
144 − 4x = 15

−4x = −129

x =
129
4

The solution is
129
4

.

13. 8 = 5x− 3

11 = 5x Adding 3 on both sides
11
5

= x Dividing by 5 on both sides

The solution is
11
5

.

14. 9 = 4x− 8

17 = 4x
17
4

= x

The solution is
17
4

.

15.
2
5
y − 2 =

1
3

The LCD is 15.

15
(

2
5
y − 2

)
= 15 · 1

3
Multiplying by the LCD
to clear fractions

6y − 30 = 5

6y = 35 Adding 30 on both sides

y =
35
6

Dividing by 6 on both sides

The solution is
35
6

.

16. −x+ 1 = 1 − x
1 = 1 Adding x on both sides

We get an equation that is true for any value of x, so the
solution set is the set of real numbers,
{x|x is a real number}, or (−∞,∞).

17. y + 1 = 2y − 7

1 = y − 7 Subtracting y on both sides

8 = y Adding 7 on both sides
The solution is 8.

18. 5 − 4x = x− 13

18 = 5x
18
5

= x

The solution is
18
5

.
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19. 2x+ 7 = x+ 3

x+ 7 = 3 Subtracting x on both sides

x = −4 Subtracting 7 on both sides

The solution is −4.

20. 5x− 4 = 2x+ 5

3x− 4 = 5

3x = 9

x = 3

The solution is 3.

21. 3x− 5 = 2x+ 1

x− 5 = 1 Subtracting 2x on both sides

x = 6 Adding 5 on both sides

The solution is 6.

22. 4x+ 3 = 2x− 7

2x = −10

x = −5

The solution is −5.

23. 4x− 5 = 7x− 2

−5 = 3x− 2 Subtracting 4x on both sides

−3 = 3x Adding 2 on both sides

−1 = x Dividing by 3 on both sides

The solution is −1.

24. 5x+ 1 = 9x− 7

8 = 4x

2 = x

The solution is 2.

25. 5x− 2 + 3x = 2x+ 6 − 4x

8x− 2 = 6 − 2x Collecting like terms

8x+ 2x = 6 + 2 Adding 2x and 2 on
both sides

10x = 8 Collecting like terms

x =
8
10

Dividing by 10 on both

sides

x =
4
5

Simplifying

The solution is
4
5
.

26. 5x− 17 − 2x = 6x− 1 − x
3x− 17 = 5x− 1

−2x = 16

x = −8

The solution is −8.

27. 7(3x+ 6) = 11 − (x+ 2)

21x+ 42 = 11 − x− 2 Using the distributive
property

21x+ 42 = 9 − x Collecting like terms

21x+ x = 9 − 42 Adding x and subtract-
ing 42 on both sides

22x = −33 Collecting like terms

x = −33
22

Dividing by 22 on both

sides

x = −3
2

Simplifying

The solution is −3
2
.

28. 4(5y + 3) = 3(2y − 5)

20y + 12 = 6y − 15

14y = −27

y = −27
14

The solution is −27
14

.

29. 3(x+ 1) = 5 − 2(3x+ 4)

3x+ 3 = 5 − 6x− 8 Removing parentheses

3x+ 3 = −6x− 3 Collecting like terms

9x+ 3 = −3 Adding 6x

9x = −6 Subtracting 3

x = −2
3

Dividing by 9

The solution is −2
3
.

30. 4(3x+ 2) − 7 = 3(x− 2)

12x+ 8 − 7 = 3x− 6

12x+ 1 = 3x− 6

9x+ 1 = −6

9x = −7

x = −7
9

The solution is −7
9
.

31. 2(x− 4) = 3 − 5(2x+ 1)

2x− 8 = 3 − 10x− 5 Using the distributive
property

2x− 8 = −10x− 2 Collecting like terms

12x = 6 Adding 10x and 8 on both sides

x =
1
2

Dividing by 12 on both sides

The solution is
1
2
.
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32. 3(2x− 5) + 4 = 2(4x+ 3)

6x− 15 + 4 = 8x+ 6

6x− 11 = 8x+ 6

−2x = 17

x = −17
2

The solution is −17
2

.

33. Familiarize. Let w = the wholesale sales of bottled water
in 2001, in billions of dollars. An increase of 54% over this
amount is 54% · w, or 0.54w.

Translate.
Wholesale sales

in 2001︸ ︷︷ ︸ plus
increase
in sales︸ ︷︷ ︸ is

Wholesale sales
in 2006.︸ ︷︷ ︸� � � � �

w + 0.54w = 10.6

Carry out. We solve the equation.

w + 0.54w = 10.6

1.54w = 10.6

w =
10.6
1.54

w ≈ 6.9

Check. 54% of 6.9 is 0.54(6.9) or about 3.7, and 6.9+3.7 =
10.6. The answer checks.

State. Wholesale sales of bottled water in 2001 were about
$6.9 billion.

34. Let d = the daily global demand for oil in 2005, in millions
of barrels.

Solve: d+ 0.23d = 103

d ≈ 84 million barrels per day

35. Familiarize. Let d = the average credit card debt per
household in 1990.

Translate.
Debt in 1990︸ ︷︷ ︸ plus additional debt︸ ︷︷ ︸ is debt in 2004.︸ ︷︷ ︸� � � � �

d + 6346 = 9312

Carry out. We solve the equation.

d+ 6346 = 9312

d = 2966 Subtracting 6346

Check. $2966 + $6346 = $9312, so the answer checks.

State. The average credit card debt in 1990 was $2966
per household.

36. Let n = the number of nesting pairs of bald eagles in the
lower 48 states in 1963.

Solve: n+ 6649 = 7066

n = 417 pairs of bald eagles

37. Familiarize. Let d = the number of gigabytes of digital
data stored in a typical household in 2004.

Translate.
Data stored

in 2004︸ ︷︷ ︸ plus
additional

data︸ ︷︷ ︸ is
data stored

in 2010.︸ ︷︷ ︸� � � � �
d + 4024 = 4430

Carry out. We solve the equation.

d+ 4024 = 4430

d = 406 Subtracting 4024

Check. 406 + 4024 = 4430, so the answer checks.

State. In 2004, 406 GB of digital data were stored in a
typical household.

38. Let s = the amount of a student’s expenditure for books
that goes to the college store.

Solve: s = 0.232(940)

s = $218.08

39. Familiarize. Let v = the number of visitors to the Grand
Canyon in 2005, in millions. Then v + 4.8 = the number
of visitors to the Great Smokey Mountains Park.

Translate.

Number of
visitors to the
Grand Canyon︸ ︷︷ ︸

plus

Number of
visitors to

Great Smokey
Mountains︸ ︷︷ ︸

is
Total

number
of visitors.︸ ︷︷ ︸� � � � �

v + v + 4.8 = 13.6

Carry out. We solve the equation.

v + v + 4.8 = 13.6

2v + 4.8 = 13.6

2v = 8.8

v = 4.4

Then v + 4.8 = 9.2.

Check. 9.2 million is 4.8 million more than 4.4 million,
and 4.4 million + 9.2 million = 13.6 million, so the answer
checks.

State. In 2005 there were 4.4 million visitors to the Grand
Canyon and 9.2 million visitors to the Great Smokey
Mountains Park.

40. Let c = the average daily calorie requirement for many
adults.

Solve: 1560 =
3
4
c

c = 2080 calories

41. Familiarize. Let v = the number of ABC viewers, in
millions. Then v + 1.7 = the number of CBS viewers and
v − 1.7 = the number of NBC viewers.

Translate.
ABC

viewers︸ ︷︷ ︸ plus
CBS

viewers︸ ︷︷ ︸ plus
NBC

viewers︸ ︷︷ ︸ is
total

viewers.︸ ︷︷ ︸� � � � � � �
v + (v + 1.7) + (v − 1.7) = 29.1
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Carry out.

v + (v + 1.7) + (v − 1.7) = 29.1

3v = 29.1

v = 9.7

Then v+1.7 = 9.7+1.7 = 11.4 and v−1.7 = 9.7−1.7 = 8.0.

Check. 9.7 + 11.4 + 8.0 = 29.1, so the answer checks.

State. ABC had 9.7 million viewers, CBS had 11.4 million
viewers, and NBC had 8.0 million viewers.

42. Let h = the number of households represented by the rat-
ing.

Solve: h = 11.0(1, 102, 000)

h = 12, 122, 000 households

43. Familiarize. Let P = the amount Tamisha borrowed. We
will use the formula I = Prt to find the interest owed. For
r = 5%, or 0.05, and t = 1, we have I = P (0.05)(1), or
0.05P .

Translate.
Amount borrowed︸ ︷︷ ︸ plus interest is $1365.� � � � �

P + 0.05P = 1365

Carry out. We solve the equation.

P + 0.05P = 1365

1.05P = 1365 Adding

P = 1300 Dividing by 1.05

Check. The interest due on a loan of $1300 for 1 year at
a rate of 5% is $1300(0.05)(1), or $65, and $1300 + $65 =
$1365. The answer checks.

State. Tamisha borrowed $1300.

44. Let P = the amount invested.

Solve: P + 0.04P = $1560

P = $1500

45. Familiarize. Let s = Ryan’s sales for the month. Then
his commission is 8% of s, or 0.08s.

Translate.
Base salary︸ ︷︷ ︸ plus commission is total pay.︸ ︷︷ ︸� � � � �

1500 + 0.08s = 2284

Carry out. We solve the equation.

1500 + 0.08s = 2284

0.08s = 784 Subtracting 1500

s = 9800

Check. 8% of $9800, or 0.08($9800), is $784 and $1500 +
$784 = $2284. The answer checks.

State. Ryan’s sales for the month were $9800.

46. Let s = the amount of sales for which the two choices will
be equal.

Solve: 1800 = 1600 + 0.04s

s = $5000

47. Familiarize. Let d = the number of miles Diego traveled
in the cab.

Translate.

Pickup
fee︸ ︷︷ ︸ plus

cost
per
mile︸ ︷︷ ︸

times
number
of miles
traveled︸ ︷︷ ︸

is $19.75.

� � � � � � �
1.75 + 1.50 · d = 19.75

Carry out. We solve the equation.

1.75 + 1.50 · d = 19.75

1.5d = 18 Subtracting 1.75

d = 12 Dividing by 1.5

Check. If Diego travels 12 mi, his fare is $1.75+$1.50 ·12,
or $1.75 + $18, or $19.75. The answer checks.

State. Diego traveled 12 mi in the cab.

48. Let w = Soledad’s regular hourly wage. She worked 48 −
40, or 8 hr, of overtime.

Solve: 40w + 8(1.5w) = 442

w = $8.50

49. Familiarize. We make a drawing.

✔
✔
✔
✔
✔
✔✔

❝
❝

❝
❝

❝
❝

❝❝

A

B

C

x

5x

x− 2

We let x = the measure of angle A. Then 5x = the measure
of angle B, and x− 2 = the measure of angle C. The sum
of the angle measures is 180◦.

Translate.
Measure

of
angle A︸ ︷︷ ︸

+
Measure

of
angle B︸ ︷︷ ︸

+
Measure

of
angle C︸ ︷︷ ︸

= 180.

� � � � � � �
x + 5x + x− 2 = 180

Carry out. We solve the equation.

x+ 5x+ x− 2 = 180

7x− 2 = 180

7x = 182

x = 26

If x = 26, then 5x = 5 · 26, or 130, and x− 2 = 26 − 2, or
24.

Check. The measure of angle B, 130◦, is five times the
measure of angle A, 26◦. The measure of angle C, 24◦, is
2◦ less than the measure of angle A, 26◦. The sum of the
angle measures is 26◦ + 130◦ + 24◦, or 180◦. The answer
checks.

State. The measure of angles A, B, and C are 26◦, 130◦,
and 24◦, respectively.
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50. Let x = the measure of angle A.

Solve: x+ 2x+ x+ 20 = 180

x = 40◦, so the measure of angle A is 40◦; the measure of
angle B is 2 · 40◦, or 80◦; and the measure of angle C is
40◦ + 20◦, or 60◦.

51. Familiarize. Using the labels on the drawing in the text,
we let w = the width of the test plot and w + 25 = the
length, in meters. Recall that for a rectangle, Perime-
ter = 2 · length + 2 · width.

Translate.
Perimeter︸ ︷︷ ︸ = 2 · length︸ ︷︷ ︸ + 2 · width︸ ︷︷ ︸� � � � �

322 = 2(w + 25) + 2 · w
Carry out. We solve the equation.

322 = 2(w + 25) + 2 · w
322 = 2w + 50 + 2w

322 = 4w + 50

272 = 4w

68 = w

When w = 68, then w + 25 = 68 + 25 = 93.

Check. The length is 25 m more than the width: 93 =
68 + 25. The perimeter is 2 · 93 + 2 · 68, or 186 + 136, or
322 m. The answer checks.

State. The length is 93 m; the width is 68 m.

52. Let w = the width of the garden.

Solve: 2 · 2w + 2 · w = 39

w = 6.5, so the width is 6.5 m, and the length is 2(6.5), or
13 m.

53. Familiarize. Let l = the length of the soccer field and
l − 35 = the width, in yards.

Translate. We use the formula for the perimeter of a
rectangle. We substitute 330 for P and l − 35 for w.

P = 2l + 2w

330 = 2l + 2(l − 35)

Carry out. We solve the equation.

330 = 2l + 2(l − 35)

330 = 2l + 2l − 70

330 = 4l − 70

400 = 4l

100 = l

If l = 100, then l − 35 = 100 − 35 = 65.

Check. The width, 65 yd, is 35 yd less than the length,
100 yd. Also, the perimeter is

2 · 100 yd + 2 · 65 yd = 200 yd + 130 yd = 330 yd.

The answer checks.

State. The length of the field is 100 yd, and the width is
65 yd.

54. Let h = the height of the poster and
2
3
h = the width, in

inches.

Solve: 100 = 2 · h+ 2 · 2
3
h

h = 30, so the height is 30 in. and the width is
2
3
· 30, or

20 in.

55. Familiarize. Let w = the number of pounds of Kimiko’s
body weight that is water.

Translate.
50% of body weight︸ ︷︷ ︸ is water.

↓ ↓ ↓ ↓ ↓
0.5 × 135 = w

Carry out. We solve the equation.
0.5 × 135 = w

67.5 = w

Check. Since 50% of 138 is 67.5, the answer checks.

State. 67.5 lb of Kimiko’s body weight is water.

56. Let w = the number of pounds of Emilio’s body weight
that is water.

Solve: 0.6 × 186 = w

w = 111.6 lb

57. Familiarize. We make a drawing. Let t = the number
of hours the passenger train travels before it overtakes the
freight train. Then t+1 = the number of hours the freight
train travels before it is overtaken by the passenger train.
Also let d = the distance the trains travel.

✲�

80 mph t hr d
Passenger train

✲�

60 mph t+ 1 hr d
Freight train

We can also organize the information in a table.

d = r · t

Distance Rate Time

Freight
d 60 t+ 1

train

Passenger
d 80 t

train
Translate. Using the formula d = rt in each row of the
table, we get two equations.

d = 60(t+ 1) and d = 80t.

Since the distances are the same, we have the equation

60(t+ 1) = 80t.

Carry out. We solve the equation.
60(t+ 1) = 80t

60t+ 60 = 80t

60 = 20t

3 = t
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When t = 3, then t+ 1 = 3 + 1 = 4.

Check. In 4 hr the freight train travels 60 · 4, or 240 mi.
In 3 hr the passenger train travels 80 · 3, or 240 mi. Since
the distances are the same, the answer checks.

State. It will take the passenger train 3 hr to overtake the
freight train.

58. Let t = the time the private airplane travels.

Distance Rate Time

Private
d 180 t

airplane

Jet d 900 t− 2

From the table we have the following equations:

d = 180t and d = 900(t− 2)

Solve: 180t = 900(t− 2)

t = 2.5

In 2.5 hr the private airplane travels 180(2.5), or 450 km.
This is the distance from the airport at which it is over-
taken by the jet.

59. Familiarize. Let t = the number of hours it takes the
kayak to travel 36 mi upstream. The kayak travels up-
stream at a rate of 12 − 4, or 8 mph.

Translate. We use the formula d = rt.

36 = 8 · t
Carry out. We solve the equation.

36 = 8 · t
4.5 = t

Check. At a rate of 8 mph, in 4.5 hr the kayak travels
8(4.5), or 36 mi. The answer checks.

State. It takes the kayak 4.5 hr to travel 36 mi upstream.

60. Let t = the number of hours it will take Angelo to travel
20 km downstream. The kayak travels downstream at a
rate of 14 + 2, or 16 km/h.

Solve: 20 = 16t

t = 1.25 hr

61. Familiarize. Let t = the number of hours it will take the
plane to travel 1050 mi into the wind. The speed into the
headwind is 450 − 30, or 420 mph.

Translate. We use the formula d = rt.

1050 = 420 · t
Carry out. We solve the equation.

1050 = 420 · t
2.5 = t

Check. At a rate of 420 mph, in 2.5 hr the plane travels
420(2.5), or 1050 mi. The answer checks.

State. It will take the plane 2.5 hr to travel 1050 mi into
the wind.

62. Let t = the number of hours it will take the plane to travel
700 mi with the wind. The speed with the wind is 375+25,
or 400 mph.

Solve: 700 = 400t

t = 1.75 hr

63. Familiarize. Let x = the amount invested at 3% interest.
Then 5000−x = the amount invested at 4%. We organize
the information in a table, keeping in mind the simple
interest formula, I = Prt.

Amount Interest Amount
invested rate Time of interest

3% 3%, or x(0.03)(1),
invest- x 1 yr
ment 0.03 or 0.03x
4% 4%, or (5000−x)(0.04)(1),
invest- 5000−x 1 yr
ment 0.04 or 0.04(5000−x)
Total 5000 176

Translate.
Interest on

3% investment︸ ︷︷ ︸ plus
interest on

4% investment︸ ︷︷ ︸ is $176.

� � � � �
0.03x + 0.04(5000 − x) = 176

Carry out. We solve the equation.

0.03x+ 0.04(5000 − x) = 176

0.03x+ 200 − 0.04x = 176

−0.01x+ 200 = 176

−0.01x = −24

x = 2400

If x = 2400, then 5000 − x = 5000 − 2400 = 2600.

Check. The interest on $2400 at 3% for 1 yr is
$2400(0.03)(1) = $72. The interest on $2600 at 4% for
1 yr is $2600(0.04)(1) = $104. Since $72 + $104 = $176,
the answer checks.

State. $2400 was invested at 3%, and $2600 was invested
at 4%.

64. Let x = the amount borrowed at 5%. Then 9000 − x =
the amount invested at 6%.

Solve: 0.05x+ 0.06(9000 − x) = 492

x = 4800, so $4800 was borrowed at 5% and $9000 −
$4800 = $4200 was borrowed at 6%.

65. Familiarize. Let c = the calcium content of the cheese,
in mg. Then 2c+ 4 = the calcium content of the yogurt.

Translate.
Calcium
content
of cheese︸ ︷︷ ︸

plus
calcium
content

of yogurt︸ ︷︷ ︸
is

total calcium
content.︸ ︷︷ ︸� � � � �

c + (2c+ 4) = 676
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Carry out. We solve the equation.

c+ (2c+ 4) = 676

3c+ 4 = 676

3c = 672

c = 224

Then 2c+ 4 = 2 · 224 + 4 = 448 + 4 = 452.

Check. 224 + 452 = 676, so the answer checks.

State. The cheese contains 224 mg of calcium, and the
yogurt contains 452 mg.

66. Let p = the number of people in the United States without
health insurance in 1987, in millions.

Solve: 55.8 = 2p− 17.2

p = 36.5 million people

67. Familiarize. Let l = the elevation of Lucas Oil Stadium,
in feet.

Translate.

Elevation of
Invesco Field︸ ︷︷ ︸ is 247 ft︸ ︷︷ ︸ more

than︸ ︷︷ ︸ 7 times
Elevation of
Lucas Oil
Stadium︸ ︷︷ ︸� � � � � � �

5210 = 247 + 7 · l

Carry out. We solve the equation.

5210 = 247 + 7l

4963 = 7l

709 = l

Check. 247 more than 7 times 709 is 247 + 7 · 709 =
247 + 4963 = 5210. The answer checks.

State. The elevation of Lucas Oil Stadium is 709 ft.

68. Let a = the number of adults in prison in the United States
in 1980, in millions.

Solve: 1.7 = 5.4a

a ≈ 0.31 million adults

69. Familiarize. Let n = the number of inches the volcano
rises in a year. We will express one-half mile in inches:

1
2

mi × 5280 ft
1 mi

× 12 in.
1 ft

= 31, 680 in.

Translate.

50,000 yr︸ ︷︷ ︸ times
number of inches

per year︸ ︷︷ ︸ is 31,680 in.︸ ︷︷ ︸� � � � �
50, 000 · n = 31, 680

Carry out. We solve the equation.

50, 000n = 31, 680

n = 0.6336

Check. Rising at a rate of 0.6336 in. per year, in 50,000 yr
the volcano will rise 50, 000(0.6336), or 31,680 in. The
answer checks.

State. On average, the volcano rises 0.6336 in. in a year.

70. Let x = the number of years it will take Horseshoe Falls
to migrate one-fourth mile upstream. We will express one-
fourth mile in feet:

1
4

mi × 5280 ft
1 mi

= 1320 ft

Solve: 2x = 1320

x = 660 yr

71. x+ 5 = 0 Setting f(x) = 0

x+ 5 − 5 = 0 − 5 Subtracting 5 on both sides

x = −5

The zero of the function is −5.

72. 5x+ 20 = 0

5x = −20

x = −4

73. −2x+ 11 = 0 Setting f(x) = 0

−2x+ 11 − 11 = 0 − 11 Subtracting 11 on both
sides

−2x = −11

x =
11
2

Dividing by −2 on both sides

The zero of the function is
11
2

.

74. 8 + x = 0

x = −8

75. 16 − x = 0 Setting f(x) = 0

16 − x+ x = 0 + x Adding x on both sides

16 = x

The zero of the function is 16.

76. −2x+ 7 = 0

−2x = −7

x =
7
2

77. x+ 12 = 0 Setting f(x) = 0

x+ 12 − 12 = 0 − 12 Subtracting 12 on
both sides

x = −12

The zero of the function is −12.

78. 8x+ 2 = 0

8x = −2

x = −1
4
, or − 0.25

79. −x+ 6 = 0 Setting f(x) = 0

−x+ 6 + x = 0 + x Adding x on both sides

6 = x

The zero of the function is 6.

80. 4 + x = 0

x = −4
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81. 20 − x = 0 Setting f(x) = 0

20 − x+ x = 0 + x Adding x on both sides

20 = x

The zero of the function is 20.

82. −3x+ 13 = 0

−3x = −13

x =
13
3
, or 4.3

83. 2
5
x− 10 = 0 Setting f(x) = 0

2
5
x = 10 Adding 10 on both sides

5
2
· 2
5
x =

5
2
· 10 Multiplying by

5
2

on both

sides
x = 25

The zero of the function is 25.

84. 3x− 9 = 0

3x = 9

x = 3

85. −x+ 15 = 0 Setting f(x) = 0

15 = x Adding x on both sides

The zero of the function is 15.

86. 4 − x = 0

4 = x

87. a) The graph crosses the x-axis at (4, 0). This is the
x-intercept.

b) The zero of the function is the first coordinate of
the x-intercept. It is 4.

88. a) (5, 0)

b) 5

89. a) The graph crosses the x-axis at (−2, 0). This is the
x-intercept.

b) The zero of the function is the first coordinate of
the x-intercept. It is −2.

90. a) (2, 0)

b) 2

91. a) The graph crosses the x-axis at (−4, 0). This is the
x-intercept.

b) The zero of the function is the first coordinate of
the x-intercept. It is −4.

92. a) (−2, 0)

b) −2

93. A =
1
2
bh

2A = bh Multiplying by 2 on both sides
2A
h

= b Dividing by h on both sides

94. A = πr2

A

r2
= π

95. P = 2l + 2w

P − 2l = 2w Subtracting 2l on both sides

P − 2l
2

= w Dividing by 2 on both sides

96. A = P + Prt

A− P = Prt
A− P
Pt

= r

97. A =
1
2
h(b1 + b2)

2A
h

= b1 + b2 Multiplying by
2
h

on both sides

2A
h

− b1 = b2, or Subtracting b1 on both sides

2A− b1h
h

= b2 Using a common demoninator

98. A =
1
2
h(b1 + b2)

2A = h(b1 + b2)
2A

b1 + b2
= h

99. V =
4
3
πr3

3V = 4πr3 Multiplying by 3 on both sides
3V
4r3

= π Dividing by 4r3 on both sides

100. V =
4
3
πr3

3V
4π

= r3

101. F =
9
5
C + 32

F − 32 =
9
5
C Subtracting 32 on both sides

5
9
(F − 32) = C Multiplying by

5
9

on both sides

102. Ax+By = C

By = C −Ax
y =

C −Ax
B

103. Ax+By = C

Ax = C −By Subtracting By on both sides

A =
C −By
x

Dividing by x on both sides

104. 2w + 2h+ l = p

2w = p− 2h− l
w =

p− 2h− l
2
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105. 2w + 2h+ l = p

2h = p− 2w − l Subtracting 2w and l

h =
p− 2w − l

2
Dividing by 2

106. 3x+ 4y = 12

4y = 12 − 3x

y =
12 − 3x

4
107. 2x− 3y = 6

−3y = 6 − 2x Subtracting 2x

y =
6 − 2x
−3

, or Dividing by −3

2x− 6
3

108. T =
3
10

(I − 12, 000)

10
3
T = I − 12, 000

10
3
T + 12, 000 = I, or

10T + 36, 000
3

= I

109. a = b+ bcd

a = b(1 + cd) Factoring
a

1 + cd
= b Dividing by 1 + cd

110. q = p− np
q = p(1 − n)

q

1 − n = p

111. z = xy − xy2
z = x(y − y2) Factoring

z

y − y2 = x Dividing by y − y2

112. st = t− 4

st− t = −4

t(s− 1) = −4

t =
−4
s− 1

, or
4

1 − s
113. The graph of f(x) = mx+ b, m 	= 0, is a straight line that

is not horizontal. The graph of such a line intersects the
x-axis exactly once. Thus, the function has exactly one
zero.

114. If a person wanted to convert several Fahrenheit temper-
atures to Celsius, it would be useful to solve the formula
for C and then use the formula in that form.

115. First find the slope of the given line.
3x+ 4y = 7

4y = −3x+ 7

y = −3
4
x+

7
4

The slope is −3
4
. Now write a slope-intersect equation of

the line containing (−1, 4) with slope −3
4
.

y − 4 = −3
4
[x− (−1)]

y − 4 = −3
4
(x+ 1)

y − 4 = −3
4
x− 3

4

y = −3
4
x+

13
4

116. m =
4 − (−2)
−5 − 3

=
6
−8

= −3
4

y − 4 = −3
4
(x− (−5))

y − 4 = −3
4
x− 15

4

y = −3
4
x+

1
4

117. d =
√

(x2 − x1)2 + (y2 − y1)2
=
√

(−10 − 2)2 + (−3 − 2)2

=
√

144 + 25 =
√

169 = 13

118.
(
x1 + x2

2
,
y1 + y2

2

)
=

(−1
2

+
(
− 3

2

)
2

,

2
5

+
3
5

2

)
=(

− 2
2
,
1
2

)
=
(
− 1,

1
2

)

119. f(x) =
x

x− 3

f(−3) =
−3

−3 − 3
=

−3
−6

=
1
2

f(0) =
0

0 − 3
=

0
−3

= 0

f(3) =
3

3 − 3
=

3
0

Since division by 0 is not defined, f(3) does not exist.

120. 7x− y =
1
2

−y = −7x+
1
2

y = 7x− 1
2

With the equation in the form y = mx+ b, we see that the

slope is 7 and the y-intercept is
(

0,−1
2

)
.

121. f(x) = 7 − 3
2
x = −3

2
x+ 7

The function can be written in the form y = mx+ b, so it
is a linear function.

122. f(x) =
3
2x

+ 5 cannot be written in the form f(x) = mx+
b, so it is not a linear function.
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123. f(x) = x2+1 cannot be written in the form f(x) = mx+b,
so it is not a linear function.

124. f(x) =
3
4
x− (2.4)2 is in the form f(x) = mx + b, so it is

a linear function.

125. 2x− {x− [3x− (6x+ 5)]} = 4x− 1

2x− {x− [3x− 6x− 5]} = 4x− 1

2x− {x− [−3x− 5]} = 4x− 1

2x− {x+ 3x+ 5} = 4x− 1

2x− {4x+ 5} = 4x− 1

2x− 4x− 5 = 4x− 1

−2x− 5 = 4x− 1

−6x− 5 = −1

−6x = 4

x = −2
3

The solution is −2
3
.

126. 14 − 2[3 + 5(x− 1)] = 3{x− 4[1 + 6(2 − x)]}
14 − 2[3 + 5x− 5] = 3{x− 4[1 + 12 − 6x]}

14 − 2[5x− 2] = 3{x− 4[13 − 6x]}
14 − 10x+ 4 = 3{x− 52 + 24x}

18 − 10x = 3{25x− 52}
18 − 10x = 75x− 156

174 = 85x
174
85

= x

127. The size of the cup was reduced 8 oz − 6 oz, or 2 oz, and
2 oz
8 oz

= 0.25, so the size was reduced 25%. The price per

ounce of the 8 oz cup was
89/c
8 oz

, or 11.25/c/oz. The price

per ounce of the 6 oz cup is
71/c
6 oz

, or 11.83/c/oz. Since the
price per ounce was not reduced, it is clear that the price
per ounce was not reduced by the same percent as the size
of the cup. The price was increased by 11.83− 11.125/c, or

0.7083/c per ounce. This is an increase of
0.7083/c
11.83/c

≈ 0.064,

or about 6.4% per ounce.

128. The size of the container was reduced 100 oz − 80 oz, or

20 oz, and
20 oz
100 oz

= 0.2, so the size of the container was

reduced 20%. The price per ounce of the 100-oz container

was
$6.99
100 oz

, or $0.0699/oz. The price per ounce of the

80-oz container is
$5.75
80 oz

, or $0.071875. Since the price per
ounce was not reduced, it is clear that the price per ounce
was not reduced by the same percent as the size of the
container. The price increased by $0.071875 − $0.0699, or

$0.001975. This is an increase of
$0.001975
$0.0699

≈ 0.028, or

about 2.8% per ounce.

129. We use a proportion to determine the number of calories
c burned running for 75 minutes, or 1.25 hr.

720
1

=
c

1.25
720(1.25) = c

900 = c

Next we use a proportion to determine how long the person
would have to walk to use 900 calories. Let t represent this
time, in hours. We express 90 min as 1.5 hr.

1.5
480

=
t

900
900(1.5)

480
= t

2.8125 = t

Then, at a rate of 4 mph, the person would have to walk
4(2.8125), or 11.25 mi.

130. Let x = the number of copies of The Secret that were sold.
Then 7367 − x = the number of copies of The Measure of
a Man that were sold.

Solve:
x

7367 − x =
10
3.9

x = 5300, so 7367 copies of The Secret were sold and 7367−
5300 = 2067 copies of The Measure of a Man were sold.

Exercise Set 1.6

1. 4x− 3 > 2x+ 7

2x− 3 > 7 Subtracting 2x

2x > 10 Adding 3

x > 5 Dividing by 2

The solution set {x|x > 5}, or (5,∞). The graph is shown
below.

2. 8x+ 1 ≥ 5x− 5

3x ≥ −6

x ≥ −2

The solution set {x|x ≥ −2}, or [−2,∞). The graph is
shown below.

3. x+ 6 < 5x− 6

6 + 6 < 5x− x Subtracting x and adding 6
on both sides

12 < 4x
12
4
< x Dividing by 4 on both sides

3 < x
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This inequality could also be solved as follows:

x + 6 < 5x− 6

x− 5x < −6 − 6 Subtracting 5x and 6 on
both sides

−4x < −12

x >
−12
−4

Dividing by −4 on both sides and

reversing the inequality symbol
x > 3

The solution set is {x|x > 3}, or (3,∞). The graph is
shown below.

4. 3 − x < 4x + 7

−5x < 4

x > −4
5

The solution set is
{
x
∣∣∣x > −4

5

}
, or

(
− 4

5
,∞
)
. The graph

is shown below.

5. 4 − 2x ≤ 2x + 16

4 − 4x ≤ 16 Subtracting 2x

−4x ≤ 12 Subtracting 4

x ≥ −3 Dividing by −4 and reversing
the inequality symbol

The solution set is {x|x ≥ −3}, or [−3,∞). The graph is
shown below.

6. 3x− 1 > 6x + 5

−3x > 6

x < −2

The solution set is {x|x < −2}, or (−∞,−2). The graph
is shown below.

7. 14 − 5y ≤ 8y − 8

14 + 8 ≤ 8y + 5y

22 ≤ 13y
22
13

≤ y

This inequality could also be solved as follows:

14 − 5y ≤ 8y − 8

−5y − 8y ≤ −8 − 14

−13y ≤ −22

y ≥ 22
13

Dividing by −13 on
both sides and reversing
the inequality symbol

The solution set is
{
y

∣∣∣∣y ≥ 22
13

}
, or

[
22
13

,∞
)

. The graph

is shown below.

8. 8x− 7 < 6x + 3

2x < 10

x < 5

The solution set is {x|x < 5}, or (−∞, 5). The graph is
shown below.

9. 7x− 7 > 5x + 5

2x− 7 > 5 Subtracting 5x

2x > 12 Adding 7

x > 6 Dividing by 2

The solution set is {x|x > 6}, or (6,∞). The graph is
shown below.

10. 12 − 8y ≥ 10y − 6

−18y ≥ −18

y ≤ 1

The solution set is {y|y ≤ 1}, or (−∞, 1]. The graph is
shown below.

11. 3x− 3 + 2x ≥ 1 − 7x− 9

5x− 3 ≥ −7x− 8 Collecting like terms
5x + 7x ≥ −8 + 3 Adding 7x and 3

on both sides
12x ≥ −5

x ≥ − 5
12

Dividing by 12 on both sides

The solution set is
{
x
∣∣∣x ≥ − 5

12

}
, or

[
− 5

12
,∞
)

. The

graph is shown below.
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12. 5y − 5 + y ≤ 2 − 6y − 8

6y − 5 ≤ −6y − 6

12y ≤ −1

y ≤ − 1
12

The solution set is
{
y
∣∣∣y ≤ − 1

12

}
, or

(
−∞,− 1

12
,

]
. The

graph is shown below.

13. −3
4
x ≥ −5

8
+

2
3
x

5
8
≥ 3

4
x +

2
3
x

5
8
≥ 9

12
x +

8
12

x

5
8
≥ 17

12
x

12
17

· 5
8
≥ 12

17
· 17
12

x

15
34

≥ x

The solution set is
{
x

∣∣∣∣x ≤ 15
34

}
, or

(
−∞,

15
34

]
. The

graph is shown below.

14. −5
6
x ≤ 3

4
+

8
3
x

−21
6
x ≤ 3

4

x ≥ − 3
14

The solution set is
{
x

∣∣∣∣x ≥ − 3
14

}
, or

[
− 3

14
,∞
)

. The

graph is shown below.

15. 4x(x− 2) < 2(2x− 1)(x− 3)

4x(x− 2) < 2(2x2 − 7x + 3)

4x2 − 8x < 4x2 − 14x + 6

−8x < −14x + 6

−8x + 14x < 6

6x < 6

x <
6
6

x < 1

The solution set is {x|x < 1}, or (−∞, 1). The graph is
shown below.

16. (x + 1)(x + 2) > x(x + 1)

x2 + 3x + 2 > x2 + x

2x > −2

x > −1

The solution set is {x|x > −1}, or (−1,∞). The graph is
shown below.

17. −2 ≤ x + 1 < 4

−3 ≤ x < 3 Subtracting 1

The solution set is [−3, 3). The graph is shown below.

18. −3 < x + 2 ≤ 5

−5 < x ≤ 3

(−5, 3]

19. 5 ≤ x− 3 ≤ 7

8 ≤ x ≤ 10 Adding 3

The solution set is [8, 10]. The graph is shown below.

20. −1 < x− 4 < 7

3 < x < 11

(3, 11)

21. −3 ≤ x + 4 ≤ 3

−7 ≤ x ≤ −1 Subtracting 4

The solution set is [−7,−1]. The graph is shown below.

22. −5 < x + 2 < 15

−7 < x < 13

(−7, 13)

23. −2 < 2x + 1 < 5

−3 < 2x < 4 Adding −1

−3
2
< x < 2 Multiplying by

1
2

The solution set is
(
− 3

2
, 2
)

. The graph is shown below.
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24. −3 ≤ 5x + 1 ≤ 3

−4 ≤ 5x ≤ 2

−4
5
≤ x ≤ 2

5[
− 4

5
,
2
5

]

25. −4 ≤ 6 − 2x < 4

−10 ≤ −2x < −2 Adding −6

5 ≥ x > 1 Multiplying by −1
2

or 1 < x ≤ 5

The solution set is (1, 5]. The graph is shown below.

26. −3 < 1 − 2x ≤ 3

−4 < −2x ≤ 2

2 > x ≥ −1

[−1, 2)

27. −5 <
1
2
(3x + 1) < 7

−10 < 3x + 1 < 14 Multiplying by 2

−11 < 3x < 13 Adding −1

−11
3

< x <
13
3

Multiplying by
1
3

The solution set is
(
− 11

3
,
13
3

)
. The graph is shown be-

low.

28. 2
3
≤ −4

5
(x− 3) < 1

−5
6
≥ x− 3 > −5

4
13
6

≥ x >
7
4(

7
4
,
13
6

]

29. 3x ≤ −6 or x− 1 > 0

x ≤ −2 or x > 1

The solution set is (−∞,−2]∪ (1,∞). The graph is shown
below.

30. 2x < 8 or x + 3 ≥ 10

x < 4 or x ≥ 7

(−∞, 4) ∪ [7,∞)

31. 2x + 3 ≤ −4 or 2x + 3 ≥ 4

2x ≤ −7 or 2x ≥ 1

x ≤ −7
2
or x ≥ 1

2

The solution set is
(
−∞,−7

2

]
∪
[
1
2
,∞
)

. The graph is

shown below.

32. 3x− 1 < −5 or 3x− 1 > 5

3x < −4 or 3x > 6

x < −4
3
or x > 2

(
−∞,−4

3

)
∪ (2,∞)

33. 2x− 20 < −0.8 or 2x− 20 > 0.8

2x < 19.2 or 2x > 20.8

x < 9.6 or x > 10.4

The solution set is (−∞, 9.6) ∪ (10.4,∞). The graph is
shown below.

34. 5x + 11 ≤ −4 or 5x + 11 ≥ 4

5x ≤ −15 or 5x ≥ −7

x ≤ −3 or x ≥ −7
5

(−∞,−3] ∪
[
− 7

5
,∞
)
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35. x + 14 ≤ −1
4

or x + 14 ≥ 1
4

x ≤ −57
4

or x ≥ −55
4

The solution set is
(
−∞,−57

4

]
∪
[
− 55

4
,∞
)

. The

graph is shown below.

36. x− 9 < −1
2
or x− 9 >

1
2

x <
17
2

or x >
19
2(

−∞,
17
2

)
∪
(

19
2
,∞
)

37. Familiarize and Translate. Spending is given by the
equation y = 12.7x + 15.2. We want to know when the
spending will be more than $66 billion, so we have

12.7x + 15.2 > 66.

Carry out. We solve the inequality.

12.7x + 15.2 > 66

12.7x > 50.8

x > 4

Check. When x = 4, the spending is 12.7(4) + 15.2 =
66. As a partial check, we could try a value of x less
than 4 and one greater than 4. When x = 3.9, we have
y = 12.7(3.9) + 15.2 = 64.73 < 66; when x = 4.1, we
have y = 12.7(4.1) + 15.2 = 67.27 > 66. Since y = 66
when x = 4 and y > 66 when x = 4.1 > 4, the answer is
probably correct.

State. The spending will be more than $66 billion more
than 4 yr after 2002.

38. Solve: 5x + 5 ≥ 20

x ≥ 3, so 3 or more yr after 2002, or in 2005 and later, there
will be at least 20 million homes with devices installed that
receive and manage broadband TV and Internet content.

39. Familiarize. Let t = the number of hours worked. Then
Acme Movers charge 100 + 30t and Hank’s Movers charge
55t.

Translate.
Hank’s charge︸ ︷︷ ︸ is less than︸ ︷︷ ︸ Acme’s charge.︸ ︷︷ ︸� � �

55t < 100 + 30t

Carry out. We solve the inequality.

55t < 100 + 30t

25t < 100

t < 4

Check. When t = 4, Hank’s Movers charge 55 · 4, or $220
and Acme Movers charge 100 + 30 · 4 = 100 + 120 = $220,
so the charges are the same. As a partial check, we find
the charges for a value of t < 4. When t = 3.5, Hank’s
Movers charge 55(3.5) = $192.50 and Acme Movers charge
100 + 30(3.5) = 100 + 105 = $205. Since Hank’s charge is
less than Acme’s, the answer is probably correct.

State. For times less than 4 hr it costs less to hire Hank’s
Movers.

40. Let x = the amount invested at 4%. Then 12, 000 − x =
the amount invested at 6%.

Solve: 0.04x + 0.06(12, 000 − x) ≥ 650

x ≤ 3500, so at most $3500 can be invested at 4%.

41. Familiarize. Let x = the amount invested at 4%. Then
7500− x = the amount invested at 5%. Using the simple-
interest formula, I = Prt, we see that in one year the
4% investment earns 0.04x and the 5% investment earns
0.05(7500 − x).

Translate.
Interest at 4%︸ ︷︷ ︸ plus interest at 5%︸ ︷︷ ︸ is at least︸ ︷︷ ︸ $325.� � � � �

0.04x + 0.05(7500 − x) ≥ 325

Carry out. We solve the inequality.

0.04x + 0.05(7500 − x) ≥ 325

0.04x + 375 − 0.05x ≥ 325

−0.01x + 375 ≥ 325

−0.01x ≥ −50

x ≤ 5000

Check. When $5000 is invested at 4%, then $7500−$5000,
or $2500, is invested at 5%. In one year the 4% invest-
ment earns 0.04($5000), or $200, in simple interest and
the 5% investment earns 0.05($2500), or $125, so the total
interest is $200 + $125, or $325. As a partial check, we
determine the total interest when an amount greater than
$5000 is invested at 4%. Suppose $5001 is invested at 4%.
Then $2499 is invested at 5%, and the total interest is
0.04($5001) + 0.05($2499), or $324.99. Since this amount
is less than $325, the answer is probably correct.

State. The most that can be invested at 4% is $5000.

42. Let c = the number of checks written per month.

Solve: 0.20c < 6 + 0.05c

c < 40, so the Smart Checking plan will cost less than the
Consumer Checking plan when fewer than 40 checks are
written per month.

43. Familiarize. Let c = the number of checks written per
month. Then the No Frills plan costs 0.35c per month and
the Simple Checking plan costs 5 + 0.10c per month.

Translate.
Simple Checking cost︸ ︷︷ ︸ is less than︸ ︷︷ ︸ No Frills cost.︸ ︷︷ ︸� � �

5 + 0.10c < 0.35c
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Carry out. We solve the inequality.
5 + 0.10c < 0.35c

5 < 0.25c

20 < c

Check. When 20 checks are written the No Frills plan
costs 0.35(20), or $7 per month and the Simple Checking
plan costs 5 + 0.10(20), or $7, so the costs are the same.
As a partial check, we compare the cost for some number
of checks greater than 20. When 21 checks are written,
the No Frills plan costs 0.35(21), or $7.35 and the Simple
Checking plan costs 5+0.10(21), or $7.10. Since the Simple
Checking plan costs less than the No Frills plan, the answer
is probably correct.

State. The Simple Checking plan costs less when more
than 20 checks are written per month.

44. Let s = the monthly sales.

Solve: 750 + 0.1s > 1000 + 0.08(s− 2000)

s > 4500, so Plan A is better for monthly sales greater
than $4500.

45. Familiarize. Let s = the monthly sales. Then the amount
of sales in excess of $8000 is s− 8000.

Translate.
Income from

plan B︸ ︷︷ ︸
is greater

than︸ ︷︷ ︸
income from

plan A.︸ ︷︷ ︸� � �
1200 + 0.15(s− 8000) > 900 + 0.1s

Carry out. We solve the inequality.
1200 + 0.15(s− 8000) > 900 + 0.1s

1200 + 0.15s− 1200 > 900 + 0.1s

0.15s > 900 + 0.1s

0.05s > 900

s > 18, 000

Check. For sales of $18,000 the income from plan A is
$900+0.1($18, 000), or $2700, and the income from plan B
is 1200+0.15(18, 000− 8000), or $2700 so the incomes are
the same. As a partial check we can compare the incomes
for an amount of sales greater than $18,000. For sales of
$18,001, for example, the income from plan A is $900 +
0.1($18, 001), or $2700.10, and the income from plan B is
$1200 + 0.15($18, 001 − $8000), or $2700.15. Since plan B
is better than plan A in this case, the answer is probably
correct.

State. Plan B is better than plan A for monthly sales
greater than $18,000.

46. Solve: 200 + 12n > 20n

n < 25

47. The solution set of a disjunction is a union of sets, so it is
not possible for a disjunction to have no solution.

48. By definition, the notation 3 < x < 4 indicates that
3 < x and x < 4. The disjunction x < 3 or x > 4 cannot
be written 3 > x > 4, or 4 < x < 3, because it is not
possible for x to be greater than 4 and less than 3.

49. 5x− 7 = 8

5x = 15

x = 3

The solution is 3.

50. 2 − 3x = x− 8

−4x = −10

x =
5
2
, or 2.5

The solution is
5
2
, or 2.5.

51. 3(x + 1) = 4 − 2(x− 3)

3x + 3 = 4 − 2x + 6

3x + 3 = 10 − 2x

5x = 7

x =
7
5
, or1.4

The solution is
7
5
, or 1.4.

52. 4(2x− 5) + 12 = 3(2x− 6)

8x− 20 + 12 = 6x− 18

8x− 8 = 6x− 18

2x = −10

x = −5

The solution is −5.

53. Familiarize. Let a = the number of passengers, in mil-
lions, who travel on airlines each day. Then a+12.2 = the
number of passengers on mass transit systems each day.

Translate.
Airline

passengers︸ ︷︷ ︸ plus
Mass transit
passengers︸ ︷︷ ︸ is

Total number
of passengers︸ ︷︷ ︸� � � � �

a + a + 12.2 = 15.8

Carry out. We solve the equation.

a + a + 12.2 = 15.8

2a + 12.2 = 15.8

2a = 3.6

a = 1.8

Then a + 12.2 = 1.8 + 12.2 = 14.

Check. 14 million is 12.2 million more than 1.8 million,
and 1.8 million + 14 million = 15.8 million, so the answer
checks.

State. Each day 1.8 million Americans travel on airlines
and 14 million travel on mass transit systems.

54. Let s = the total sales of organic pet food in 2003, in
millions of dollars.

Solve: s + 37 = 51

s = $14 million
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55. 2x ≤ 5 − 7x < 7 + x

2x ≤ 5 − 7x and 5 − 7x < 7 + x

9x ≤ 5 and −8x < 2

x ≤ 5
9

and x > −1
4

The solution set is
(
− 1

4
,
5
9

]
.

56. x ≤ 3x− 2 ≤ 2 − x

x ≤ 3x− 2 and 3x− 2 ≤ 2 − x

−2x ≤ −2 and 4x ≤ 4

x ≥ 1 and x ≤ 1

The solution is 1.

57. 3y < 4 − 5y < 5 + 3y

0 < 4 − 8y < 5 Subtracting 3y

−4 < −8y < 1 Subtracting 4
1
2
> y > −1

8
Dividing by −8 and reversing
the inequality symbols

The solution set is
(
− 1

8
,
1
2

)
.

58. y − 10 < 5y + 6 ≤ y + 10

−10 < 4y + 6 ≤ 10 Subtracting y

−16 < 4y ≤ 4

−4 < y ≤ 1

The solution set is (−4, 1].

Chapter 1 Review Exercises

1. Because the line passes through the origin, its x-intercept
is (0, 0). Thus, the statement is false.

2. The statement is true. See pages 82 and 83 in the text.

3. First we solve each equation for y.

ax + y = c x− by = d

y = −ax + c −by = −x + d

y =
1
b
x− d

b
If the lines are perpendicular, the product of their slopes is

−1, so we have −a · 1
b

= −1, or −a

b
= −1, or

a

b
= 1. The

statement is true.

4. The line parallel to the y-axis that passes through (−5, 25)
is x = −5, so the statement is false.

5. For the lines y =
1
2

and x = −5, the x-coordinate of the

point of intersection is −5 and the y-coordinate is
1
2
, so

the statement is true.

6. f(−3) =

√
3 − (−3)
−3

=
√

6
−3

, so −3 is in the domain of

f(x). Thus, the statement is false.

7. For
(

3,
24
9

)
: 2x− 9y = −18

2 · 3 − 9 · 24
9

? −18∣∣
6 − 24

∣∣∣
−18

∣∣ −18 TRUE(
3,

24
9

)
is a solution.

For (0,−9): 2x− 9y = −18

2(0) − 9(−9) ? −18
0 + 81

∣∣∣
81
∣∣ −18 FALSE

(0,−9) is not a solution.

8. For (0, 7): y = 7

7 ? 7 TRUE

(0, 7) is a solution.

For (7, 1): y = 7

1 ? 7 FALSE

(7, 1) is not a solution.

9. 2x− 3y = 6

To find the x-intercept we replace y with 0 and solve for
x.

2x− 3 · 0 = 6

2x = 6

x = 3

The x-intercept is (3, 0).

To find the y-intercept we replace x with 0 and solve for
y.

2 · 0 − 3y = 6

−3y = 6

y = −2

The y-intercept is (0,−2).

We plot the intercepts and draw the line that contains
them. We could find a third point as a check that the
intercepts were found correctly.
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10.

11.

12.

13.

14. d =
√

(x1 − x2)2 + (y1 − y2)2

=
√

(3 − (−2))2 + (7 − 4)2

=
√

52 + 32 =
√

34 ≈ 5.831

15. m =
(
x1 + x2

2
,
y1 + y2

2

)

=
(

3 + (−2)
2

,
7 + 4

2

)

=
(

1
2
,
11
2

)

16. (x + 1)2 + (y − 3)2 = 9

[x− (−1)]2 + (y − 3)2 = 32 Standard form

The center is (−1, 3) and the radius is 3.

17. (x− h)2 + (y − k)2 = r2

(x− 0)2 + [y − (−4)]2 =
(

3
2

)2

Substituting

x2 + (y + 4)2 =
9
4

18. (x− h)2 + (y − k)2 = r2

[x− (−2)]2 + (y − 6)2 = (
√

13)2

(x + 2)2 + (y − 6)2 = 13

19. The center is the midpoint of the diameter:(−3 + 7
2

,
5 + 3

2

)
=
(

4
2
,
8
2

)
= (2, 4)

Use the center and either endpoint of the diameter to find
the radius. We use the point (7, 3).

r =
√

(7 − 2)2 + (3 − 4)2 =
√

52 + (−1)2 =√
25 + 1 =

√
26

The equation of the circle is (x−2)2 + (y−4)2 = (
√

26)2,
or (x− 2)2 + (y − 4)2 = 26.

20. The correspondence is not a function because one member
of the domain, 2, corresponds to more than one member
of the range.

21. The correspondence is a function because each member
of the domain corresponds to exactly one member of the
range.

22. The relation is not a function, because the ordered pairs
(3, 1) and (3, 5) have the same first coordinate and different
second coordinates.

Domain: {3, 5, 7}
Range: {1, 3, 5, 7}

23. The relation is a function, because no two ordered pairs
have the same first coordinate and different second co-
ordinates. The domain is the set of first coordinates:
{−2, 0, 1, 2, 7}. The range is the set of second coordinates:
{−7,−4,−2, 2, 7}.

24. f(x) = x2 − x− 3

a) f(0) = 02 − 0 − 3 = −3

b) f(−3) = (−3)2 − (−3) − 3 = 9 + 3 − 3 = 9
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c) f(a− 1) = (a− 1)2 − (a− 1) − 3

= a2 − 2a + 1 − a + 1 − 3

= a2 − 3a− 1

d) f(−x) = (−x)2 − (−x) − 3

= x2 + x− 3

25. f(x) =
x− 7
x + 5

a) f(7) =
7 − 7
7 + 5

=
0
12

= 0

b) f(x + 1) =
x + 1 − 7
x + 1 + 5

=
x− 6
x + 6

c) f(−5) =
−5 − 7
−5 + 5

=
−12
0

Since division by 0 is not defined, f(−5) does not exist.

d) f

(
− 1

2

)
=

−1
2
− 7

−1
2

+ 5
=

−15
2

9
2

= −15
2

· 2
9

=

−3/ · 5 · 2/
2/ · 3/ · 3 = −5

3

26. From the graph we see that when the input is 2, the output
is −1, so f(2) = −1. When the input is −4, the output is
−3, so f(−4) = −3. When the input is 0, the output is
−1, so f(0) = −1.

27. This is not the graph of a function, because we can find a
vertical line that crosses the graph more than once.

28. This is the graph of a function, because there is no vertical
line that crosses the graph more than once.

29. This is not the graph of a function, because we can find a
vertical line that crosses the graph more than once.

30. This is the graph of a function, because there is no vertical
line that crosses the graph more than once.

31. We can substitute any real number for x. Thus, the do-
main is the set of all real numbers, or (−∞,∞).

32. The input 0 results in a denominator of zero. Thus, the
domain is {x|x �= 0}, or (−∞, 0) ∪ (0,∞).

33. Find the inputs that make the denominator zero:
x2 − 6x + 5 = 0

(x− 1)(x− 5) = 0

x− 1 = 0 or x− 5 = 0

x = 1 or x = 5

The domain is {x|x �= 1 and x �= 5}, or
(−∞, 1) ∪ (1, 5) ∪ (5,∞).

34. Find the inputs that make the denominator zero:
|16 − x2| = 0

16 − x2 = 0

(4 + x)(4 − x) = 0

4 + x = 0 or 4 − x = 0

x = −4 or 4 = x

The domain is {x|x �= −4 and x �= 4}, or
(−∞,−4) ∪ (−4, 4) ∪ (4,∞).

35. We graph y =
√

16 − x2 in the squared window
[−9, 9,−6, 6].

The inputs on the x axis extend from −4 to 4, so the
domain is [−4, 4].

The outputs on the y-axis extend from 0 to 4, so the range
is [0, 4].

36. We graph y = |x− 5| in the standard window.

Each point on the x-axis corresponds to a point on the
graph, so the domain is the set of all real numbers, or
(−∞,∞).

The number 0 is the smallest output on the y-axis and
every number greater than 0 is also an output, so the range
is [0,∞).

37. We graph y = x3 − 7 in the window [−10, 10,−15, 15].

Every point on the x-axis corresponds to a point on the
graph, so the domain is the set of all real numbers, or
(−∞,∞).

Each point on the y-axis also corresponds to a point on
the graph, so the range is the set of all real numbers, or
(−∞,∞).

38. We graph y = x4 + x2 in the window [−5, 5,−5, 5].
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Each point on the x-axis corresponds to a point on the
graph, so the domain is the set of all real numbers, or
(−∞,∞).

The number 0 is the smallest output on the y-axis and
every number greater than 0 is also an output, so the range
is [0,∞).

39. a) Yes. Each input is 1 more than the one that pre-
cedes it.

b) No. The change in the output varies.

c) No. Constant changes in inputs do not result in
constant changes in outputs.

40. a) Yes. Each input is 10 more than the one that pre-
cedes it.

b) Yes. Each output is 12.4 more than the one that
precedes it.

c) Yes. Constant changes in inputs result in constant
changes in outputs.

41. m =
y2 − y1

x2 − x1

=
−6 − (−11)

5 − 2
=

5
3

42. m =
4 − 4
−3 − 5

=
0
−8

= 0

43. m =
y2 − y1

x2 − x1

=
0 − 3
1
2
− 1

2

=
−3
0

The slope is not defined.

44. We have the data points (1980, 3.10) and (2006, 5.15). We
find the average rate of change, or slope.

m =
5.15 − 3.10
2006 − 1980

=
2.05
26

≈ 0.08

The average rate of change over the 26-year period was
about $0.08 per year.

45. y = − 7
11

x− 6

The equation is in the form y = mx+b. The slope is − 7
11

,

and the y-intercept is (0,−6).

46. −2x− y = 7

−y = 2x + 7

y = −2x− 7

Slope: −2; y-intercept: (0,−7)

47. Graph y = −1
4
x + 3.

Plot the y-intercept, (0, 3). We can think of the slope as
−1
4

. Start at (0, 3) and find another point by moving down

1 unit and right 4 units. We have the point (4, 2).

We could also think of the slope as
1
−4

. Then we can start

at (0, 3) and find another point by moving up 1 unit and

left 4 units. We have the point (−4, 4). Connect the three
points and draw the graph.

48. Let t = number of months of basic service.
C(t) = 60 + 44t

C(12) = 60 + 44 · 12 = $588

49. a) T (d) = 10d + 20

T (5) = 10(5) + 20 = 70◦C

T (20) = 10(20) + 20 = 220◦C

T (1000) = 10(1000) + 20 = 10, 020◦C

b) 5600 km is the maximum depth. Domain: [0, 5600].

50. y = mx + b

y = −2
3
x− 4 Substituting −2

3
for m and −4 for b

51. y − y1 = m(x− x1)

y − (−1) = 3(x− (−2))

y + 1 = 3(x + 2)

y + 1 = 3x + 6

y = 3x + 5

52. First we find the slope.

m =
−1 − 1
−2 − 4

=
−2
−6

=
1
3

Use the point-slope equation:

Using (4, 1): y − 1 =
1
3
(x− 4)

Using (−2,−1): y − (−1) =
1
3
(x− (−2)), or

y + 1 =
1
3
(x + 2)

In either case, we have y =
1
3
x− 1

3
.

53. The horizontal line that passes through
(
− 4,

2
5

)
is

2
5

unit

above the x-axis. An equation of the line is y =
2
5
.

The vertical line that passes through
(
− 4,

2
5

)
is 4 units

to the left of the y-axis. An equation of the line is x = −4.

54. Two points on the line are (−2,−9) and (4, 3). First we
find the slope.

m =
y2 − y1

x2 − x1
=

3 − (−9)
4 − (−2)

=
12
6

= 2

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley



   

92 Chapter 1: Graphs, Functions, and Models

Now we use the point-slope equation with the point (4, 3).

y − y1 = m(x− x1)

y − 3 = 2(x− 4)

y − 3 = 2x− 8

y = 2x− 5, or

h(x) = 2x− 5

Then h(0) = 2 · 0 − 5 = −5.

55. 3x− 2y = 8 6x− 4y = 2

y =
3
2
x− 4 y =

3
2
x− 1

2

The lines have the same slope,
3
2
, and different

y-intercepts, (0,−4) and
(

0,−1
2

)
, so they are parallel.

56. y − 2x = 4 2y − 3x = −7

y = 2x + 4 y =
3
2
x− 7

2

The lines have different slopes, 2 and
3
2
, so they are not

parallel. The product of the slopes, 2 · 3
2
, or 3, is not −1, so

the lines are not perpendicular. Thus the lines are neither
parallel nor perpendicular.

57. The slope of y =
3
2
x + 7 is

3
2

and the slope of y = −2
3
x− 4

is −2
3
. Since

3
2

(
− 2

3

)
= −1, the lines are perpendicular.

58. 2x + 3y = 4

3y = −2x + 4

y = −2
3
x +

4
3
; m = −2

3

The slope of a line parallel to the given line is −2
3
.

We use the point-slope equation.

y − y1 = m(x− x1)

y − (−1) = −2
3
(x− 1)

y = −2
3
x− 1

3

59. From Exercise 58 we know that the slope of the given line

is −2
3
. The slope of a line perpendicular to this line is the

negative reciprocal of −2
3
, or

3
2
.

We use the slope-intercept equation to find the y-intercept.

y = mx + b

−1 =
3
2
· 1 + b

−1 =
3
2

+ b

−5
2

= b

Then the equation of the desired line is y =
3
2
x− 5

2
.

60. a) Answers may vary depending on the data points
used. We will use (3, 837) and (15, 648).

m =
648 − 837

15 − 3
=

−189
12

= −15.75

Use the point-slope equation with (3, 837).

y − 837 = −15.75(x− 3)

y − 837 = −15.75x + 47.25
y = −15.75x + 884.25,where x is the

number of years after 1990

In 2009, y = −15.75(19) + 884.25 = 585 sites.

b) y = −18.72380952x + 902.0952381, where x is the
number of years after 1990

In 2009, y = −18.72380952(19)+902.0952381 ≈ 546
sites.

r ≈ −0.9587; since |r| is close to 1, the line fits the
data well.

61. 4y − 5 = 1

4y = 6

y =
3
2

The solution is
3
2
.

62. 3x− 4 = 5x + 8

−12 = 2x

−6 = x

63. 5(3x + 1) = 2(x− 4)

15x + 5 = 2x− 8

13x = −13

x = −1

The solution is −1.

64. 2(n− 3) = 3(n + 5)

2n− 6 = 3n + 15

−21 = n

65. 3
5
y − 2 =

3
8

The LCD is 40

40
(

3
5
y−2

)
= 40 · 3

8
Multiplying to clear fractions

24y − 80 = 15

24y = 95

y =
95
24

The solution is
95
24

.

66. 5 − 2x = −2x + 3

5 = 3 False equation

The equation has no solution.

67. x− 13 = −13 + x

−13 = −13 Subtracting x
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We have an equation that is true for any real num-
ber, so the solution set is the set of all real numbers,
{x|x is a real number}, or (−∞,∞).

68. Let r = the number of orphans adopted from Russia in
2006. Then r + 2787 = the number of orphans adopted
from China.

Solve: r + r + 2787 = 10, 199

r = 3706, so r + 2787 = 3706 + 2787 = 6493.

In 2006, Americans adopted 3706 orphans from Russia and
6493 from China.

69. Familiarize. Let a = the amount originally invested. Us-
ing the simple interest formula, I = Prt, we see that the
interest earned at 5.2% interest for 1 year is a(0.052) · 1 =
0.052a.

Translate.
Amount
invested︸ ︷︷ ︸ plus

interest
earned︸ ︷︷ ︸ is $2419.60

� � � � �
a + 0.052a = 2419.60

Carry out. We solve the equation.
a + 0.052a = 2419.60

1.052a = 2419.60

a = 2300

Check. 5.2% of $2300 is 0.052($2300), or $119.60, and
$2300 + $119.60 = $2419.60. The answer checks.

State. $2300 was originally invested.

70. Let t = the time it will take the plane to travel 1802 mi.

Solve: 1802 = (550 − 20)t

t = 3.4 hr

71. 6x− 18 = 0

6x = 18

x = 3
The zero of the function is 3.

72. x− 4 = 0

x = 4
The zero of the function is 4.

73. 2 − 10x = 0

−10x = −2

x =
1
5
, or 0.2

The zero of the function is
1
5
, or 0.2.

74. 8 − 2x = 0

−2x = −8

x = 4
The zero of the function is 4.

75. V = lwh

V

lw
= h Dividing by lw

76. M = n + 0.3s

M − n = 0.3s
M − n

0.3
= s

77. A = P + Prt

A− P = Prt

A− P

Pr
= t

78. 2x− 5 < x + 7

x < 12

The solution set is {x|x < 12}, or (−∞, 12).

79. 3x + 1 ≥ 5x + 9

−2x + 1 ≥ 9 Subtracting 5x

−2x ≥ 8 Subtracting 1

x ≤ −4 Dividing by −2 and reversing
the inequality symbol

The solution set is {x|x ≤ −4}, or (−∞,−4].

80. −3 ≤ 3x + 1 ≤ 5

−4 ≤ 3x ≤ 4

−4
3
≤ x ≤ 4

3[
− 4

3
,
4
3

]

81. −2 < 5x− 4 ≤ 6

2 < 5x ≤ 10 Adding 4
2
5
< x ≤ 2 Dividing by 5

The solution set is
(

2
5
, 2
]
.

82. 2x < −1 or x− 3 > 0

x < −1
2

or x > 3

The solution set is
{
x

∣∣∣∣x < −1
2
or x > 3

}
, or(

−∞,−1
2

)
∪ (3,∞).
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83. 3x + 7 ≤ 2 or 2x + 3 ≥ 5

3x ≤ −5 or 2x ≥ 2

x ≤ −5
3

or x ≥ 1

The solution set is
(
−∞,−5

3

]
∪ [1,∞).

84. Familiarize and Translate. The number of faculty, in
thousands, is given by the equation y = 6x+121. We want
to know when this number will exceed 325 thousand, so we
have

6x + 121 > 325.

Carry out. We solve the inequality.

6x + 121 > 325

6x > 204

x > 34

Check. When x = 34. the number of faculty is
6 ·34+121 = 325. As a partial check, we could try a value
of x less than 34 and one greater than 34. When x = 33.9
we have y = 6(33.9) + 121 = 324.4 < 325; when x = 34.1
we have y = 6(34.1) + 121 = 325.6 > 325. Since y = 325
when x = 34 and y > 325 when x > 34, the answer is
probably correct.

State. There will be more than 325 thousand faculty
members more than 34 years after 1970, or in years af-
ter 2004.

85. Familiarize. We will use the formula given in the exercise,

C =
5
9
(F − 32).

Translate.
Celsius temperature︸ ︷︷ ︸ is lower than︸ ︷︷ ︸ 45◦.� � �

5
9
(F − 32) < 45

Carry out. We solve the inequality.
5
9
(F − 32) < 45

F − 32 <
9
5
· 45

F − 32 < 81

F < 113

Check. When the temperature is 113◦F, the correspond-
ing Celsius temperature is

5
9
(113 − 32) =

5
9
· 81 = 45◦ C.

Then it seems reasonable that for Fahrenheit temperatures
lower than 113◦F, the corresponding Celsius temperatures
are lower than 45◦C.

State. For Fahrenheit temperatures less than 113◦F, Cel-
sius temperatures are lower than 45◦C.

86. f(x) =
x + 3
8 − 4x

When x = 2, the denominator is 0, so 2 is not in the
domain of the function. Thus, the domain is
(−∞, 2) ∪ (2,∞) and answer B is correct.

87. (x− 1)2 + y2 = 9

(x− 1)2 + (y − 0)2 = 32

The center is (1, 0), so answer B is correct.

88. The graph of f(x) = −1
2
x− 2 has slope −1

2
, so it slants

down from left to right. The y-intercept is (0,−2). Thus,
graph C is the graph of this function.

89. If an equation contains no fractions, using the addition
principle before using the multiplication principle elimi-
nates the need to add or subtract fractions.

90. Think of the slopes are
−3/5

1
and

1/2
1

. The graph of

f(x) changes
3
5

unit vertically for each unit of horizon-

tal change while the graph of g(x) changes
1
2

unit ver-

tically for each unit of horizontal change. Since
3
5
>

1
2
,

the graph of f(x) = −3
5
x + 4 is steeper than the graph of

g(x) =
1
2
x− 6.

91. Let (x, 0) be the point on the x-axis that is equidistant
from the points (1, 3) and (4,−3). Then we have:√

(x−1)2+(0−3)2 =
√

(x−4)2+(0−(−3))2√
x2−2x + 1 + 9 =

√
x2 − 8x + 16 + 9√

x2 − 2x + 10 =
√
x2 − 8x + 25

x2 − 2x + 10 = x2 − 8x + 25 Squaring
both sides

6x = 15

x =
5
2

The point is
(

5
2
, 0
)

.

92. f(x) =
√

1 − x

x− |x|
We cannot find the square root of a negative number, so
x ≤ 1. Division by zero is undefined, so x < 0.

Domain of f is {x|x < 0}, or (−∞, 0).

93. f(x) = (x− 9x−1)−1 =
1

x− 9
x

Division by zero is undefined, so x �= 0. Also, note that we
can write the function as f(x) =

x

x2 − 9
, so x �= −3, 0, 3.

Domain of f is {x|x �= −3 and x �= 0 and x �= 3}, or
(−∞,−3) ∪ (−3, 0) ∪ (0, 3) ∪ (3,∞).
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Chapter 1 Test

1. 5y − 4 = x

5 · 9
10

− 4 ?
1
2∣∣9

2
− 4

∣∣∣∣∣1
2

∣∣ 1
2

TRUE(
1
2
,

9
10

)
is a solution.

2. 5x− 2y = −10

To find the x-intercept we replace y with 0 and solve for
x.

5x− 2 · 0 = −10

5x = −10

x = −2

The x-intercept is (−2, 0).

To find the y-intercept we replace x with 0 and solve for
y.

5 · 0 − 2y = −10

−2y = −10

y = 5

The y-intercept is (0, 5).

We plot the intercepts and draw the line that contains
them. We could find a third point as a check that the
intercepts were found correctly.

3. d =
√

(5 − (−1))2 + (8 − 5)2 =
√

62 + 32 =
√

36 + 9 =
√

45 ≈ 6.708

4. m =
(−2 + (−4)

2
,
6 + 3

2

)
=
(−6

2
,
9
2

)
=
(
− 3,

9
2

)

5. (x + 4)2 + (y − 5)2 = 36

[x− (−4)]2 + (y − 5)2 = 62

Center: (−4, 5); radius: 6

6. [x− (−1)]2 + (y − 2)2 = (
√

5)2

(x + 1)2 + (y − 2)2 = 5

7. a) The relation is a function, because no two ordered
pairs have the same first coordinate and different
second coordinates.

b) The domain is the set of first coordinates:
{−4, 0, 1, 3}.

c) The range is the set of second coordinates: {0, 5, 7}.
8. f(x) = 2x2 − x + 5

a) f(−1) = 2(−1)2 − (−1) + 5 = 2 + 1 + 5 = 8

b) f(a + 2) = 2(a + 2)2 − (a + 2) + 5

= 2(a2 + 4a + 4) − (a + 2) + 5

= 2a2 + 8a + 8 − a− 2 + 5

= 2a2 + 7a + 11

9. f(x) =
1 − x

x

a) f(0) =
1 − 0

0
=

1
0

Since the division by 0 is not defined, f(0) does not
exist.

b) f(1) =
1 − 1

1
=

0
1

= 0

10. From the graph we see that when the input is −3, the
output is 0, so f(−3) = 0.

11. a) This is not the graph of a function, because we can
find a vertical line that crosses the graph more than
once.

b) This is the graph of a function, because there is no
vertical line that crosses the graph more than once.

12. The input 4 results in a denominator of 0. Thus the do-
main is {x|x �= 4}, or (−∞, 4) ∪ (4,∞).

13. We can substitute any real number for x. Thus the domain
is the set of all real numbers, or (−∞,∞).

14. We cannot find the square root of a negative number. Thus
25−x2 ≥ 0 and the domain is {x|−5 ≤ x ≤ 5}, or [−5, 5].

15. a)

b) Each point on the x-axis corresponds to a point on
the graph, so the domain is the set of all real num-
bers, or (−∞,∞).

c) The number 3 is the smallest output on the y-axis
and every number greater than 3 is also an output,
so the range is [3,∞).

16. m =
5 − 2

3
−2 − (−2)

=

13
3
0

The slope is not defined.
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17. m =
12 − (−10)
−8 − 4

=
22
−12

= −11
6

18. m =
6 − 6

3
4
− (−5)

=
0
23
4

= 0

19. We have the points (1995, 5.3) and (2004, 6.8).

m =
6.8 − 5.3

2004 − 1995
=

1.5
9

≈ 0.167

The average rate of change in weekend attendance from
1995 to 2004 was about 0.167 million per year, or about
167,000 per year.

20. −3x + 2y = 5

2y = 3x + 5

y =
3
2
x +

5
2

Slope:
3
2
; y-intercept:

(
0,

5
2

)

21. C(t) = 80 + 39.95t

2 yr = 2 · 1 yr = 2 · 12 months = 24 months

C(24) = 80 + 39.95(24) = $1038.80

22. y = mx + b

y = −5
8
x− 5

23. First we find the slope:

m =
−2 − 4

3 − (−5)
=

−6
8

= −3
4

Use the point-slope equation.

Using (−5, 4): y − 4 = −3
4
(x− (−5)), or

y − 4 = −3
4
(x + 5)

Using (3,−2): y − (−2) = −3
4
(x− 3), or

y + 2 = −3
4
(x− 3)

In either case, we have y = −3
4
x +

1
4
.

24. The vertical line that passes through
(
− 3

8
, 11
)

is
3
8

unit

to the left of the y-axis. An equation of the line is x = −3
8
.

25. 2x + 3y = −12 2y − 3x = 8

y = −2
3
x− 4 y =

3
2
x + 4

m1 = −2
3
, m2 =

3
2
; m1m2 = −1.

The lines are perpendicular.

26. First find the slope of the given line.

x + 2y = −6

2y = −x− 6

y = −1
2
x− 3; m = −1

2

A line parallel to the given line has slope −1
2
. We use the

point-slope equation.

y − 3 = −1
2
(x− (−1))

y − 3 = −1
2
(x + 1)

y − 3 = −1
2
x− 1

2

y = −1
2
x +

5
2

27. First we find the slope of the given line.

x + 2y = −6

2y = −x− 6

y = −1
2
x− 3, m = −1

2
The slope of a line perpendicular to this line is the negative

reciprocal of −1
2
, or 2. Now we find an equation of the line

with slope 2 and containing (−1, 3).

Using the slope-intercept equation:

y = mx + b

3 = 2(−1) + b

3 = −2 + b

5 = b

The equation is y = 2x + 5.

Using the point-slope equation.

y − y1 = m(x− x1)

y − 3 = 2(x− (−1))

y − 3 = 2(x + 1)

y − 3 = 2x + 2

y = 2x + 5

28. a) Answers may vary depending on the data points
used. We will use (0, 203) and (3, 212).

m =
212 − 203

3 − 0
=

9
3

= 3

We know that the y-intercept is (0, 203), so we have
y = 3x + 203, where x is the number of years after
2002 and y is in billions.

In 2010, x = 2010 − 2002 = 8.

y = 3 · 8 + 203 = 24 + 203 = 227 billion pieces of
mail.

b) Using the linear regression feature on a graphing
calculator, we have y = 3x + 201.2, where x is the
number of years after 2002 and y is in billions.

In 2010, y = 3 · 8 + 201.2 = 225.2 billion pieces of
mail.

29. 6x + 7 = 1

6x = −6

x = −1

The solution is −1.
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30. 2.5 − x = −x + 2.5

2.5 = 2.5 True equation

The solution set is {x|x is a real number}, or (−∞,∞).

31. 3
2
y − 4 =

5
3
y + 6 The LCD is 6.

6
(

3
2
y − 4

)
= 6

(
5
3
y + 6

)
9y − 24 = 10y + 36

−24 = y + 36

−60 = y

The solution is −60.

32. 2(4x + 1) = 8 − 3(x− 5)

8x + 2 = 8 − 3x + 15

8x + 2 = 23 − 3x

11x + 2 = 23

11x = 21

x =
21
11

The solution is
21
11

.

33. Familiarize. Let l = the length, in meters. Then
3
4
l =

the width. Recall that the formula for the perimeter P of
a rectangle with length l and width w is P = 2l + 2w.

Translate.
The perimeter︸ ︷︷ ︸ is 210 m.︸ ︷︷ ︸� � �

2l + 2 · 3
4
l = 210

Carry out. We solve the equation.

2l + 2 · 3
4
l = 210

2l +
3
2
l = 210

7
2
l = 210

l = 60

If l = 60, then
3
4
l =

3
4
· 60 = 45.

Check. The width, 45 m, is three-fourths of the length,
60 m. Also, 2 · 60 m + 2 · 45 m = 210 m, so the answer
checks.

State. The length is 60 m and the width is 45 m.

34. Familiarize. Let p = the wholesale price of the juice.

Translate. We express 25/c as $0.25.

Wholesale
price plus

50% of
wholesale

price
plus $0.25 is $2.95.

� � � � � � �
p + 0.5p + 0.25 = 2.95

Carry out. We solve the equation.

p + 0.5p + 0.25 = 2.95

1.5p + 0.25 = 2.95

1.5p = 2.7

p = 1.8

Check. 50% of $1.80 is $0.90 and $1.80 + $0.90 + $0.25 =
$2.95, so the answer checks.

State. The wholesale price of a bottle of juice is $1.80.

35. 3x + 9 = 0 Setting f(x) = 0

3x = −9

x = −3

The zero of the function is −3.

36. V =
2
3
πr2h

3V
2

= πr2h Multiplying by
3
2

3V
2πr2

= h Dividing by πr2

37. r = s− ts

r = s(1 − t)
r

1 − t
= s

38. 5 − x ≥ 4x + 20

5 − 5x ≥ 20

−5x ≥ 15

x ≤ −3 Dividing by −5 and reversing
the inequality symbol

The solution set is {x|x ≤ −3}, or (−∞,−3].

39. −7 < 2x + 3 < 9

−10 < 2x < 6 Subtracting 3

−5 < x < 3 Dividing by 2

The solution set is (−5, 3).

40. 2x− 1 ≤ 3 or 5x + 6 ≥ 26

2x ≤ 4 or 5x ≥ 20

x ≤ 2 or x ≥ 4

The solution set is (−∞, 2] ∪ [4,∞).
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41. Familiarize. Let t = the number of hours a move requires.
Then Morgan Movers charges 90+25t to make a move and
McKinley Movers charges 40t.

Translate.
Morgan Movers’

charge︸ ︷︷ ︸ is less than︸ ︷︷ ︸ McKinley Movers’
charge.︸ ︷︷ ︸� � �

90 + 25t < 40t

Carry out. We solve the inequality.

90 + 25t < 40t

90 < 15t

6 < t

Check. For t = 6, Morgan Movers charge 90 + 25 · 6,
or $240, and McKinley Movers charge 40 · 6, or $240, so
the charge is the same for 6 hours. As a partial check, we
can find the charges for a value of t greater than 6. For
instance, for 6.5 hr Morgan Movers charge 90 + 25(6.5),
or $252.50, and McKinley Movers charge 40(6.5), or $260.
Since Morgan Movers cost less for a value of t greater than
6, the answer is probably correct.

State. It costs less to hire Morgan Movers when a move
takes more than 6 hr.

42. The slope is −1
2
, so the graph slants down from left to

right. The y-intercept is (0, 1). Thus, graph B is the graph

of g(x) = 1 − 1
2
x.

43. First we find the value of x for which x + 2 = −2:
x + 2 = −2

x = −4

Now we find h(−4 + 2), or h(−2).

h(−4 + 2) =
1
2
(−4) = −2
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